An Observationally-Based Method for Stratifying *a-priori* Passive MW Brightness Temperature Observations in a Bayesianbased Precipitation Retrieval Framework

Joe Turk, Ziad Haddad, Pierre Kirstetter, Yalei You, Sarah Ringerud

PMM Land Surface Group Discussions May 24, 2017

Previous Studies

- A main constraint on the interpretation of passive microwave TB is the "background" – the surface emissivity, or more generally, the joint surface and atmospheric state (e.g., water vapor).
- Previous publications demonstrated that a the emissivity principal component (EPC) structure could be fairly well estimated by nonlinear combinations of all TB.
- From this, the emissivity vector (10-85 GHz), column vapor and Tsfc can be reconstructed and is fairly accurate under "cloud-free" conditions.
- Exploit low-end DPR sensitivity to separate "no-cloud" TB observations
- Apply the EPC to all scenes, then separate the EPC structure using the GPM radar profile to find "cloud" and "no-cloud" scenes.

Turk, F.J., Haddad, Z.S. & You, Y., 2016, Estimating Non-Raining Surface Parameters to Assist GPM Constellation Radiometer Precipitation Algorithms, *J. Atmos. Oceanic Technol.*, 33(2016), pp. 1333-1353.

Extension to All Scenes, not just no-cloud

- The previous work suggests that the emissivity PC structure (EPC) can classify self-similar surface conditions around the world, jointly with the associated variability in the total column vapor and surface temperature, directly from the TB observations.
- As clouds and precipitation creep into the TB scenes, the EPC structure is displaced from its no-cloudy range.
- Suggests an alternative way to separate or cluster a large database for efficient Bayesian-based inversion techniques, which otherwise are computationally unrealistic for GMI and other sensors (GMI= 650K TB pixels/orbit). No ancillary data, surface class or land/ocean algorithm separation required.
- The a-priori dataset should be extensive enough to capture the full range and frequency of occurrence of all underlying variability in nature...surface conditions, rain conditions, weather systems, etc.

One-Year (Sept 2014-Oct 2015) Matched DPR-GMI

- One full year of pixel-matched GMI and DPR data was created. Each orbit (5800 orbits) was written to a file as sequential binary record structures with TB, DPR profile, EPC, MERRA2 data, precipitation estimates from the current DPR and CMB (DPR+GMI) GPM algorithms, etc.
- From this, the histograms of the first four EPCs were determined, and divided into ten equal-density spaced bins. Defines a data "cube" with N=10000 indices.
- Each record (850M total) was appended to its associated index file.
 2% overlap was used for computational efficiency.
- Nothing is lost here....simply a reorganization of the dataset to make the search in EPC space much faster.
- In practice, the required index files are first identified, then only these files are opened one time (all pixels for index file 1, then all pixels for index file 2, etc).

Weighting of Candidate Solutions

Distance in EPC space

$$d_{EPC} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(u_{i}^{obs} - u_{i}^{DB} \right) / \sigma_{i}^{DB} \right)^{2} \quad N = 11$$

$$d_{TB} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(TB_{i}^{obs} - TB_{i}^{DB} \right) / \sigma_{i}^{DB} \right)^{2} \quad N = 9 \text{ or } 13$$

Distance in TB space

TPW search

Weighting done by proximity to column water vapor, Ts (or T2m) values, the same TELSEM class index, and distance in TB space.

EPC search

Weighting done in EPC space only.

Both search methods interrogate the identical database

Use the TELSEM index for evaluation purposes.

$$\hat{R}_{EPC} = \sum_{i=1}^{N} w_i R_i^{DB} / \sum_{i=1}^{N} w_i$$

GPM overpass near the Texas-Louisiana border

18 April 2016, near 1228 UTC

GMI Pixel at Location "B" (TPW-based search)

GMI Pixel at Location "B" (TPW-based search) TB from top 100 candidates in search

GMI Pixel at Location "B" (EPC-based search)

GMI Pixel at Location "B" (EPC-based search) TB from top 100 candidates in search

Comparison of TPW and EPC (using CMB precip)

GMI Pixel at Location "B" (EPC-based search) Locations of top 100 candidates in search

Overall Performance (Relative to GMI-Matched MRMS) (seven months between Nov 2015 and Sep 2016)

