Large-scale Environment to Improve PMW Estimates of Heavy Precipitation Over Land

Veljko Petković^{1,2}, Christian D. Kummerow¹, David L. Randel¹

¹Department of Atmospheric Science *Colorado State University*

²Earth System Science Interdisciplinary Center University of Maryland

Land Surface Working Group August 23rd 2017

Contact: veljko@atmos.colostate.edu

Data and instruments

- Radiometers:
 - TMI, GMI, AMSR₂, SSMI/Ss (level 1-C): Brightness Temperatures
- Radars:
 - PR (TRMM) : precipitation rates and reflectivity
 - DPR (GPM) : precipitation rates and reflectivity
- Ground networks, Models and algorithms:
 - MRMS : precipitation rate, reflectivity and quality index
 - o.o1° every 2-min over CONUS (Nexrad + gauges)
 - OPERA : precipitation rate, reflectivity
 - o o.o2° every 15-min over Europe (C-, S-band)
 - GEOS-Chem model with the online aerosol microphysics module TOMAS (N40) CCN concentration
 2°x 2.5° every 3 hours
 - ECMWF Interim 2mT, TPW, CAPE, u- and v-wind, Td, Spec. humidity
 0.75° -1.5° every 6-h at n pressure levels
 - GPROF Precipitation rate

Problem: Two events; same 5°x6° region; 28/29 overpasses of GPM (F-16,-17, -18, GMI, AMSR2)

(Petković and Kummerow: J. Hydrometeorol. 2015, 16, 2501–2518.)

GPM radar - DPR	Non-Flood	Flood	
Mean freezing level	2700 M	1700 M	
Convective fraction	28%	3%	
Stratiform fraction	70%	95%	
Sfc. max. refl.	27-32 dBZ	30-35 dBZ	

<u>Non-flood event</u>				
Z-R	240 R ^{1.6}			
GPROF bias	- 20 %			
Regime	Scattered, Average			

Bayesian Caveats:

- Averaging pulls the solution towards database mean
- 2. Limited information content allows for accurate retrieval of only well represented scenes

Solution:

Identifying Systematic Errors

Global Distribution of Regional Biases of GPROF TMI Retrieval

One year of TRMM data at 0.25° grid; High elevation masked out; Two marked regions: similar surface type and land area

Linking the Systematic Errors to Precipitation Regimes

Separate 1° x 1° raining scenes into: *Shallow*, *Deep-Unorganized* and *Deep-Organized* systems using:

- PR's top echo height
- Convective rainfall
- Raining fraction (Elsaesser et al. 2010, J. Climate)

Contribution to the total precipitation

	S. America	Africa
Shallow	50-60%	10%
Deep- Unorganized	30-40%	30-40%
Deep- Organized	10%	50-60%

Petkovic CSU/UM LSWG August '17

Quantifying Systematic Errors of the Precipitation Regimes

Linking Specific Precipitation Regimes to a Large-scale Environment

Regime-related environment:

- <u>CAPE</u>
- Shear
- Low-level humidity
- Vertical distribution of humidity
- Aerosol concentrations

Source: Era-Interim + GEOS-Chem

Retrieval bias dependence on synoptic

Petkovic CSU/UM LSWG August '17

Retrieving <u>Heavy</u> Precipitation Events Over the US

Reference MRMS Precipitation Rates Spatial res.: 0.01 degree Temporal res.: 2 min Domain: CONUS Compared at satellite FOV level

Large-scale environment information content - CAPE -

Improving the Quality of <u>Heavy</u> Precipitation Estimates

	Original	New	Reference
Mean precip rate [mm h ⁻¹]	2.87	3.11	3.89
Correlation	0.66	0.69	

Redistribution of the *a priori* Elements Weights

Improving the Quality of Heavy Precipitation Estimates

Impact to the Overall Performance of the Retrieval

EXTRA SLIDES

Identifying Causes of Systematic Errors

Regional ice content variability as a function of precipitation rate

Ice content to brightness temperature relationship

Large-scale environment to GPROF bias relationship

Retrieval bias dependence on synoptic state

References

Problem:

Performance of the Retrieval in an Extreme Precipitation Event

i. Petković, V. and C. D. Kummerow, 2015: Performance of the GPM Passive Microwave Retrieval in the Balkan Flood Event of 2014. *J. Hydrometeor.*, **16**, 2501–2518

Solution:

Understanding the Sources of Retrieval Systematic Errors

ii. Petković, V. and C. D. Kummerow, 2017: Understanding the Sources of Satellite Passive Microwave Rainfall Retrieval Systematic Errors Over Land. *J. Appl. Meteor. Climatol.*, **56**, 597–614

Application:

Improving the Quality of Heavy Precipitation Estimates

iii. Petković, V., C. D. Kummerow, D.L. Randel, J. Pierce and J. Kodros 2017: Improving the Quality of Heavy Precipitation Estimates from Satellite Passive Microwave Rainfall Retrievals. *Under review, J. Hydrometeor.*