Using XPOL Observations from Complex Terrain Field Experiments to Characterize Passive Microwave Retrieval Uncertainty

Yagmur Derin¹, Emmanouil Anagnostou¹, Marios Anagnostou^{2,3,4}, John Kalogiros³

¹University of Connecticut, Department of Civil and Environmental Engineering, Storrs-Mansfield, CT, USA (manos@uconn.edu)

²Dept. of Water Resources and Env. Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece

³National Observatory of Athens, Institute of Environmental Research & Sustainable Development, Athens, Greece ⁴ DUTH, School of Engineering, Department of Environmental Engineering, Xanthi, Greece

August 22nd 2018 PMM Land Surface Working Group

Multi-regional Satellite Precipitation Products Evaluation over Complex Terrain

Derin, Y., E. N. Anagnostou, A. Berne, M. Borga, B. Boudevillain, W. Buytaert, C-H. Chang, G. Delrieu, Y. Hong, Y. C. Hsu, W. Lavado-Casimiro, B. Manz, S. Moges, E. I. Nikolopoulos, D. Sahlu, F. Salerno, J-P. Rodrigues-Sanchez, H. J. Vergera, and K. K. Yilmaz, 2016: Multi-regional satellite precipitation products evaluation over complex terrain. J. Hydrometeor., 17, 1817-1836.

Multi-regional Satellite Precipitation Products Evaluation over **Complex Terrain**

rain

rain

Derin, Y., E. N. Anagnostou, A. Berne, M. Borga, B. Boudevillain, W. Buytaert, C-H. Chang, G. Delrieu, Y. Hong, Y. C. Hsu, W. Lavado-Casimiro, B. Manz, S. Moges, E. I. Nikolopoulos, D. Sahlu, F. Salerno, J-P. Rodrigues-Sanchez, H. J. Vergera, and K. K. Yilmaz: Multi-regional Evaluation of Satellite Precipitation Product IMERG over Complex Terrains. Under Preparation.

Multi-regional Satellite Precipitation Products Evaluation over Complex Terrain

Y. Derin, E. Nikolopoulos and Anagnostou., M. N., 2018: Retrieving Extreme Precipitation with Multiple Satellite-based Precipitation Products, Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Climate, Elsevier

Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain

North Carolina

May 1- June 15 2014

Main Results;

- The magnitude-dependent systematic error, going from overestimation or weak underestimation of light precipitation to mainly underestimation of heavier precipitation, shows weak covariation with the ground reference.
- GPROF V5 algorithm depicted significant improvement over its previous versions (V3 and V4). In general, the GPROF-CLIM algorithm and GPROF V5 showed the best performance in terms of correlation and systematic error for both regions

Derin, Y., Anagnostou E., Anagnostou M. N., Kalogiros J., Casella D., Marra A. C., Panegrossi G., and Sano P., 2018: Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain. IEEE Transactions on Geoscience and Remote Sensing, 56:5, 2565-2586; 10.1109/TGRS.2017.2763622

Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain

Derin, Y., Anagnostou E., Anagnostou M. N., Kalogiros J., Casella D., Marra A. C., Panegrossi G., and Sano P., 2018: Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain. IEEE Transactions on Geoscience and Remote Sensing, 56:5, 2565-2586; 10.1109/TGRS.2017.2763622

Analysis of X-Band Dual Polarization Radar Observations in OLYMPEX

- Quantify precipitation and microphysical parameters from the OLYMPEX Doppler on Wheels (DOW) dual-polarization X-band radar.
- Evaluate accuracy of these estimates against in-situ measurements from disdrometers, rain gauges and MRR.
- Use the OLYMPEX experiment to demonstrate the value of locally deployed radar as a gap fill to operational radar networks in complex terrain (i.e. NEXRAD).

Datasets

 DOW sector volumes contain scans at 6 elevations – app ~ 2.8, 3.0, 5.0, 7.0, 9.0 and 11.0 degrees DOW properties

Range59.96 kmGate Length75 mPulse Length500 nsBeam Width0.93 degBeam Indexing0.25 deg

Lowest elevation Highest elevation angles angles

	Site IDs	Instruments	Range from DOW (km)	Elev (m)
	DOW	DOW	-	72
Close in-situ stations	APU07, NASA0036	Parsivel, Gauges	4.65	65
	APU08, NASA0029	Parsivel, Gauges, MRR	5.34	87
Far in-situ stations	APU09, STDALN01	Parsivel, Gauges	15	116
	APU11, STDALN02	Parsivel, Gauges	23	181

SCOPE-ME ALGORITHM

Precipitation Algorithm

- Quality control (ρ_{HV}, V_r, σ_{Vr}, signal above noise level):
 - real-time ground clutter detection and suppression
 - beam blockage correction
 - rain signal areas detection (ρ_{HV} >0.8)
 - differential phase filtering (phase continuity, 1- 3 km linear filter for K_{DP})
- Attenuation correction: KDP-based iterative differential phase algorithm along each ray
- Bright-band detection and correction for VPR: ρ_{HV} based PPI areal method or RHI profile method
- Rain rate and microphysical parameters estimation (SCOPE-ME)

Anagnostou, M. N., John Kalogiros, Frank S. Marzano, Emmanouil N. Anagnostou, Mario Montopoli, and Errico Picciotti, 2013: Performance evaluation of a new dual-polarization microphysical algorithm based on long-term X-band radar and disdrometer observations, J. Hydrometeor. 14, 560 – 576.

Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2014: Evaluation of a new Polarimetric Algorithm for Rain-Path Attenuation Correction of X-Band Radar Observations Against Disdrometer Data, *IEEE Geoscience and Remote Sensing Letters*, **52**, 1369 – 1380.

Reflectivity Comparison at Lowest Elevation Angle

Reflectivity Comparison at Highest Elevation Angle

Reflectivity Comparison at Lowest & Highest Elevation Angle

Lowest Elevation Angle

Highest Elevation Angle

4-6

4-6

>6

>6

Rainfall Comparison for Lowest Elevation Angle

50

 $MRE = \frac{\sum (DOW R - Reference R)}{\sum Reference R}$

Rainfall Comparison for Highest Elevation Angle

 $MRE = \frac{\sum(DOW R - Reference R)}{\sum Reference R}$ **Hourly Rainfall** 50 50 Radar Rainfall (mm/hr) 2.0 10 10 10 10 10 5 CORR= 0.48 **CORR= 0.55 CORR= 0.6 CORR= 0.63** MRE= 0.22 MRE= 0.05 MRE= -0.19 MRE= 0.01 **CRMSE= 1.03 CRMSE= 0.84 CRMSE= 0.69** CRMSE= 0.8 0.5 1 5 10 0.1 0.5 1 5 10 50 0.5 1 5 10 50 0.1 0.5 1 5 10 50 0.1 0.1 Gauge Rainfall (mm/15 min) Gauge Rainfall (mm/hr) Disdrometer Rainfall (mm/hr) Disdrometer Rainfall (mm/15 min) 50 50 10 5 0.5 CORR= 0.87 **CORR= 0.69** MRE= -0.22 MRE= 0.09 CRMSE= 0.4 **CRMSE= 0.68** 0.5 1 0.5 1 0.1 5 10 **50** 0.1 5 10 **50** Rain Gauge Rainfall (mm/hr) Rain Gauge Rainfall (mm/15 min)

50

Closest in-situ stations

Rainfall Comparison for Lowest & Highest Elevation Angle

Lowest Elevation Angle

Hourly Rainfall

Event-based Accumulated Rainfall

Event-based PDFc (PDF by occurrence of rain rates) and PDFv (PDF by volume of rain rates)

Closing Remarks

 Our error analysis over North Carolina and Northeast Italy showed that PMW-based estimates have systematic underestimation particularly of high rain rates. In addition we showed that GPROF algorithm (both versions) applied on GMI has the least conditional bias. Almost all sensors have problem detecting light precipitation rates, however, performance varies across different algorithms.

 The XPOL algorithm presented in this study would facilitate more comprehensive investigation of those PMW retrieval error characteristics, because the XPOL estimates were shown to have consistently low bias and random errors across different radar ranges and rainfall magnitudes. In addition, we showed that rainfall estimation error statistics is comparable to random error evaluated by comparing collocated insitu stations.

Future Work

- Apply XPOL estimates to study PMW retrieval uncertainty
- Extend the work to additional complex terrain study areas capitalizing on their local XPOL observations.

	Ground Radar	Location	Period	Collaborator	
Processed	X-POL	Northeast Italian Alps	07/2014-09/2014 (21 events)	John Kalogiros, NOA	
	NOXP	Appalachian, North Carolina	05/2014-06/2014 (25 events)	NASA, IPHEX	
	DOW	Olympic Mountain, Washington	10/2015-02/2016 (39 events)	NASA, OLYMPEX	
	NOXP	Rocky Mountains, Colorado	09/04/2014-10/13/2014 (35 events) 07/31/2015-09/30/2015 (53 events) 03/01/2017-04/21/2017 (32 events)	Pierre Kirstetter, OU	
	X-POL	Swiss Alps	02/2014 03/2014-06/2014 06/2014-05/2015 11/2016-current	Alexis Berne, EPFL	
To be processed	NOXP	Andes, Peru	01/18/2018-04/02/2018 (45 events)	Boonleng Cheong, OU	
	X-POL	French Cevennes & Alps	09/2012-10/2012 09/2013-current	Guy Delrieu Univ. of Grenoble	
	X-POL	Korea	01/14/2018-03/12/2018	Alexis Berne, EPFL ICE-POP	
	X-POL	Arizona	2018 summer (to be deployed)	Jonathan Gourley, OU	
	X-POL	Sierras de Córdoba Mountain range, Argentina	2018 (to be deployed)	Joseph C. Hardin, Pacific Northwest National Laboratory	