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Retrieval from an a-priori database3

Principle: 

• Look for the solution among a set of previously observed atmospheric 

profiles: the a-priori database.

e.g.: GPM DPR profiles associated to observed (or simulated) TBs.

• Select the appropriate profile based on the radiometric distance to the

observation, i.e. a vectorial distance in a N-dimensional space, N =

number of channels, (N = 13 for GMI).

 The retrieval becomes an interpolation problem in the N-dimensional 

radiometric space.



Retrieval from an a-priori database4

Retrieval as an interpolation 

problem:

The function 𝑅 𝑇𝐵 to interpolate 

is irregular (in the Lipschitz sense):

𝑇𝐵1 − 𝑇𝐵2 → 0

does not necessarily imply that          

𝑅(𝑇𝐵1) − 𝑅(𝑇𝐵2) → 0

nugget 
effect

variogram of R(TB) in 
the 13-D GMI TB space



Retrieval from an a-priori database5

• Irregularity of 𝑅 𝑇𝐵 = large uncertainty on the retrieved R.

• Increasing the density of the database does not help much 

(because of the nugget effect).

• Choosing a smooth solution (average or  combination of several 

profiles of the databases) reduces the mean squared error but …

… poor performance for the retrieval of extremes. 
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smooth relations in the TB space = spatially 
smooth retrieved precipitation fields 

New information needed to reduce the uncertainty.



Adding new information7

Supplementary information …

… can be obtained from ancillary datasets, e.g. surface type, environment 

parameters from reanalyses (CAPE, TPW, 2-m-temperature …).

… can be extracted from the spatial variations of the TBs in the neighborhood

around the “pixel” of interest.

 New paradigm:

• Current algorithms invert one “pixel” at a time and all “pixels” independently, 

ignoring the spatial structure of precipitation across adjacent “pixels”.

• The “nonlocal” approach aims at overcoming the pixel-wise relations 

between TBs and precipitation.



Why?: “nonlocal” information in observed TBs8

Observation geometry
GMI footprints at 

various frequencies

What is the retrieval field of view? What defines the 

“pixel” and the retrieval “resolution”?
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Observation geometry

• Low Frequencies (<40 GHz): Significant 

overlapping of the fields of view.

• High Frequencies: 53° Earth incident 

angle => a vertical atmospheric column 

always interpolated by at least two 

different fields of view.

Different channels responding to different 

altitude levels => multi-spectral signature 

characterizing a vertical atmospheric column 

split across several pixels.
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Three-dimensional structure of the system:  

TB 89 V
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Why?: “nonlocal” information in observed TBs14

• 37 GHz TB sensitive to both liquid emission and ice scattering. 

=> Non-monotonic response to precipitation intensity.

• Area with low / medium TBs embedded 

inside an area of high TBs = geometric 

signature of a convective cell.

 Specific TB patterns are the signatures 

of specific atmospheric features.

 Scale dependence in the covariations of 

TBs and precipitation.
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How?: extracting the nonlocal information16

The spatial variability of the TBs around can 

be analyzed through convolution filters.

• Pattern extraction (with or without 

directionality parameter)

• Multiscale decomposition of the 

TB fields (orthogonal filters / 

wavelets) 

Differences of Gaussians

Gaussian



How?: utilizing the nonlocal information17

The nonlocal parameters derived from the spatial variations of the TBs can be 

used in various ways:

• By performing a pre-selection of the atmospheric profiles of the a-priori 

database before the retrieval, i.e. a first classification step.

• By including them in the observation vector to augment it and compute the 

radiometric distances in a higher-dimensional space to perform the 

retrieval.



Preliminary results18

Retrieval from GMI over land with a 700 000 - profile 

a-priori database: 

13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 GHz)



Conclusions

• Current algorithms perform pixel-wise retrievals associating the 

precipitation rate in a “pixel” only to the TBs observed inside the pixel.

• But the pixel exists within a context. TB fields have a spatial organization 

reflecting the spatial organization of precipitation. ⇒ There is information 

outside of the pixel.

+ With the scanning geometry of GMI and other similar instruments the 

pixel is ill-defined. 

• Information from outside the pixel can be extracted (e.g. using convolution 

filters) to better constrain the inversion and reduce the retrieval uncertainty.


