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Rainfall retrieval algorithms for passive microwave radiometers often exploits the
brightness temperature depression due to ice scattering at high frequency channels (=
85 GHz) over land. This study presents an alternate method to estimate the daily
rainfall amount using the emissivity temporal variation (i.e., Ae) under rain-free
conditions at low frequency channels (19, 24 and 37 GHz). Emissivity is derived from
10 passive microwave radiometers, including the Global Precipitation Measurement
(GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2
(AMSR2), three Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced
Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding
Unit-A (AMSU-A). Four different satellite combination schemes are used to derive the
Ae for daily rainfall estimates. They are all-10-satellites, 5-imagers, 6-satellites with
very different equator crossing times, and GMI-only. Results show that Ae from all-10-
satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm,
comparing with the integrated multi-satellite retrievals (IMERG) final run product. The
6-satellites scheme has comparable performance with all-10-satellites scheme. The 5-
imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of
7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and
RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only
schemes can be explained by the much longer revisit time, which cannot accurately
capture the emissivity temporal variation.
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ABSTRACT

Rainfall retrieval algorithms for passive microwave radeters often ex-
ploits the brightness temperature depression due to i¢kesog at high fre-
guency channelsX 85 GHz) over land. This study presents an alternate
method to estimate the daily rainfall amount using the ewitgstemporal
variation (i.e.,Ae) under rain-free conditions at low frequency channels (19,
24 and 37 GHz). Emissivity is derived from 10 passive micnesvaadiome-
ters, including the Global Precipitation Measurement (GRNtrowave Im-
ager (GMI), the Advanced Microwave Scanning Radiometer RI$R2),
three Special Sensor Microwave Imager/Sounder (SSMIS®),Atlvanced
Technology Microwave Sounder (ATMS), and four Advanced fdicave
Sounding Unit-A (AMSU-A). Four different satellite comlaition schemes
are used to derive the for daily rainfall estimates. They are all-10-satellites,
5-imagers, 6-satellites with very different equator cnoggimes, and GMI-
only. Results show th@te from all-10-satellites has the best performance with
a correlation of 0.60 and RMSE of 6.52 mm, comparing with titegrated
multi-satellite retrievals (IMERG) final run product. Thesétellites scheme
has comparable performance with all-10-satellites schefifee 5-imagers
scheme performs noticeably worse with a correlation of @d4® RMSE of
7.28 mm, while the GMI-only scheme performs the worst witbae&lation of
0.25 and RMSE of 11.36 mm. The inferior performance from the&gers
and GMI-only schemes can be explained by the much longesitdime,

which cannot accurately capture the emissivity temporaatian.
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1. Introduction

Spaceborne passive microwave radiometers have long beegnieed as key instruments for
global rainfall estimates over land. Early studies in 1986m the Scanning Multichannel Mi-
crowave Radiometer (SSMR) onboard Nimbus-7 satellite gllothat brightness temperature
(TB) has a clear depression signature under thunderstou@dalthe ice particles’ scattering
effect in the atmosphere (Spencer et al. 1983a,b). Manylisggafter Nimbus-7 carried the ra-
diometers capable of estimating the surface rainfall ragx tand via this ice scattering concept.
These radiometers include Special Sensor Microwave Im&jvil), Special Sensor Microwave
Imager/Sounder (SSMIS), Tropical Rainfall Measuring MissMicrowave Imager (TMI), Ad-
vanced Microwave Scanning Radiometer—Earth ObservingeBy§6AMSR-E) and its successor,
AMSR2, Global Precipitation Measurement (GPM) Microwaweaber (GMI), MicroWave Ra-
diation Imager (MWRI), Advanced Microwave Sounding Unitaf~hd B (AMSU-A/B), and Ad-
vanced Technology Microwave Sounder (ATMS). Rainfallrasties from these radiometers serve
as the backbone for generating the widely-used global jpitation datasets, including NASA's
integrated multi-satellite retrievals (IMERG) (Huffmahad. 2015), Climate Prediction Center’s
morphing technique (CMORPH) (Xie et al. 2017), and JAXAoRAl Satellite Mapping of Pre-
cipitation (GSMaP) dataset (Kubota et al. 2007).

Rainfall retrieval algorithm development has been extetgiresearched for these passive mi-
crowave radiometers. For example, Spencer et al. (1989opeal the “Polarization Corrected
Temperature” (PCT) to detect and retrieve rainfall ovedllom SSMI. Grody (1991) developed
the “scattering index” (Sl) technique to estimate the @indver land for SSMI, which is later
improved by Ferraro et al. (1994); Ferraro and Marks (198sth PCT and S| methods primar-

ily rely on the TB observations at 85 GHz over land, which is thghest available frequency
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on SSMI. With the successful launch of the TRMM satellite 897, many retrieval algorithms
for precipitation over land have also been developed for TWiang et al. 2009; Gopalan et al.
2010; Petty and Li 2013b; Islam et al. 2014). In additionriestl algorithms have also been
developed for sensors with even higher frequencies (e5§.,.abhd 183 GHz), including SSMIS
(You et al. 2015) and ATMS (Surussavadee and Staelin 2010;eYal. 2015). Different from
these sensor-specific algorithms, generic retrieval dahlgus with the capability of adapting to
all these radiometers were also developed, including théd&al profiling algorithm (GPROF)
(Kummerow et al. 2015), the Microwave Integrated Retricsgstem (MiRS) (Boukabara et al.
2011), GSMaP level-2 precipitation retrieval algorithmo@ashi et al. 2009; Shige et al. 2009),
and the one-dimensional variational (1DVAR) retrieval relb@eng et al. 2017).

To more accurately estimate the surface rainfall rate,ettfegdrometeor-based” algorithms
have to mitigate the influence from the land surface, sinceaéfgcts the integrated effect from
the hydrometeors in the air and the surface emission. Tetidsthe entire globe is divided into 5
by 5 degree grid boxes in each season in the GSMaP retriena$s (Aonashi et al. 2009). Simi-
larly, ancillary land surface type information (Aires et2011) has been used by several retrieval
algorithms (You et al. 2015; Kummerow et al. 2015). To laygeloid the possible surface con-
tamination, instead of using the signatures from windowdlets (e.g., 85GHz), Staelin and Chen
(2000) developed a rainfall retrieval algorithm solely degent on the microwave observations
near opaque water vapor and oxygen absorption channels5#8&nd 52 GHz ).

Brocca et al. (2014) proposed a conceptually differentfadliretrieval algorithm by using the
soil moisture datasets derived from spaceborne microwawsoss. They concluded that the re-
trieved 5-day rainfall accumulation from the soil moistadisasets agree reasonably well with a
ground gauge analysis dataset, indicated by the correléing as large as 0.54. The ability

to retrieve rainfall from the soil moisture is further denstmated by Koster et al. (2016), which
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showed that satellite missions designed for soil moistlorgeovations indeed contain valuable
rainfall information. In fact, soil moisture informatiorah also been exploited to improve the
hydrometeor-based rainfall retrieval results (Crow e2@D9; Pellarin et al. 2013).

There are key differences between these two types of rhal@rithms, which are referred to
as “hydrometeor-based” and “soil-moisture-based” readialgorithms for convenience. First, the
microwave sensors designed for soil moisture measurentiéine ower frequencies than those
suitable for hydrometeor measurement. For example, themeders onboard the Soil Moisture
Active-Passive (SMAP) satellite and the Soil Moisture armg&h Salinity (SMOS) satellite have a
frequency of 1.4 GHz. The Advanced Scatterometer (ASCABpand the MetOp satellites oper-
ates at~5.2 GHz. In contrast, the primary frequencies to measureéscattering over land from
passive microwave radiometers are around 85 GHz and higlger {50 and 183 GHz). The lower
frequencies used for soil moisture measurement can pémetthicker layer of soil and thereby
provide more information about the rainfall impact on thé,sehile the higher frequencies are
more sensitive to the hydrometeors in the atmosphere. 8ettmahydrometeor-based algorithm
attempts to minimize the possible surface contaminatian,(soil moisture, surface temperature,
and vegetation). On the contrary, the soil-moisture-badgarithm attempts to limit the impact
from the hydrometeors. Third, the hydrometeor-based dlgoruses the instantaneous observa-
tions at the time of the overpass, providing a snapshot ofdiméall rate at that time. In contrast,
the soil-moisture-based algorithms use observationsatgahot contaminated by hydrometeors
in the atmosphere, and therefore are more representataecamulated rainfall over some time
prior to the observation.

The objective of this study is to estimate the daily rainfedlcumulation from the land surface
emissivity variation due to the rainfall impact. Previousrivshowed that the land surface mi-

crowave emissivity tends to decrease after rainfall dudéoiicrease of soil moisture (Jackson
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1993; Ferraro et al. 2013; You et al. 2014, Yin et al. 2019)otimer words, the land surface mi-
crowave emissivity variation is directly related to soilistare change. Therefore, in essence, this
work attempts to relate the soil moisture variation to thefedl accumulation, similar to Brocca
et al. (2014) and Koster et al. (2016). The key innovatioha tve apply the soil-moisture-based
retrieval concept to the low frequency channels (19, 24 ah&Hz) from 10 satellites (Table 1),
instead of soil moisture-specific channels (1.4 GHz) thataly available on one or two satellites.

Previous rainfall retrieval algorithms for these 10 seasestimated the instantaneous rainfall
rate based on the ice scattering signal primarily from tigé fiequencies¥85 GHz) (e.g., Ferraro
et al. 2000; Ebtehaj et al. 2015; You et al. 2015; Kummerow.€1G5; You et al. 2016). For the
lower frequency channels, the ice scattering signal ispessounced over land due to the longer
wavelength (Spencer et al. 1983a). In addition, the highhagialy variable land surface emissivity
often masks out the liquid raindrop emission signal at theflequency channels (Prigent et al.
2006; Munchak et al. 2020). For these reasons, these lowdray channels are either not used or
play a secondary role in the instantaneous rainfall redtiprocess. In contrast, this study exploits
the soil moisture change (instead of the hydrometeors imitf)@ue to the recent rainfall impact
by using the non-raining observations at the low frequen®, 24, and 37 GHz) for daily rainfall
accumulation retrieval. It is worth mentioning that the framing observations account f8190%
of the overall observations.

It is noted that Birman et al. (2015) used the surface enitgssvat 89 GHz from multiple
satellites to estimate the daily rainfall accumulationroveance. As stated in the study, they
use the‘effective emissivity that includes the atmospheric citmottion in cases with cloudy/rainy
conditions”, while this study only uses the non-raining emissivitiesdaily rainfall estimates at

low frequency channels, including 19, 24 and 37 GHz.
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The data used in this study are described in section 2. Thbhadefogy, including the TB
conversion, the land surface emissivity computation, gwefall detection, and the daily rainfall
amount estimation, are provided in section 3. Section 4emtssthe retrieval results from the

microwave emissivity temporal variation. Finally, the ctusions are summarized in section 5.

2. Data

This study primarily uses three types of datasets: thelgaf€B observations, the IMERG final-
run rainfall product, and the GPM Ku-band Precipitation &a@uPR) rainfall observations.

TB observations are from 10 passive microwave radiomeieckjding three SSMIS onboard
the Defense Meteorological Satellite Program (DMSP) F1&, &d F18 satellites, AMSR2 on-
board the Global Change Observation Mission-Water (GCOMs¥tellite, GMI onboard the
GPM core observatory satellite, four AMSU-A onboard NOA8-INOAA19, MetOp-A and
MetOp-B satellites, and ATMS onboard the Suomi NationakbPorbiting Partnership (SNPP)
satellite. The channels used in study and their mean foutpesolution are listed in Table 1.
These channels often have different footprint resoluti@ection 3 introduces a method to bring
these channels to a common resolution. Additionally, tegdencies among these satellites are
not identical (e.g., 18.7 v.s. 19.4 GHz). The slight frequyedifference results in different TBs
for the same surface background and hydrometeor profileg(éaml. 2014). We demonstrate a
method to convert TBs from other nine sensors to GMI fregigsna section 3. For convenience,
we do not distinguish the slight frequency differences agnibrese sensors from now on unless
otherwise specified. These channels are referred to as VII9,\F24, V37, H37, V89 and H89.

To derive the land surface emissivity at these frequenaiesise hourly surface temperature and
3-hourly temperature and humidity profiles at the°6.6.625 resolution from Modern-Era Ret-

rospective analysis for Research and Applications, VargiMERRA-2) (Gelaro et al. 2017). We
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also use the NOAA National Environmental Satellite, Dated Bnformation Service (NESDIS)’s
daily Global 4km Multisensor Automated Snow/Ice map (GMASI filter out pixels associated
with the snowl/ice on the ground (Romanov 2017).

The half-hour IMERG final run (version 06A) product at 0.1 oiggis used to investigate the
rainfall impact duration period. The IMERG final run dailytdset at 0.1 degree spatial resolution
is taken as the surface “reference” rainfall dataset faienl. In addition, we use the KuPR
rainfall observations along with the GMI TB observationg#&in a rain/no-rain screening method,
which is applied to all TB observations to filter out the rampixels (more details in section 3c).

Data in this study are all from March 2014 (launch of the GPkélsige) to December 2018 over
the 60S-60N land areas. The pixel level observations (TB and KuPR) evadht to a nominal
resolution of 59 km (see section 3 for more details). The INEEdRata are downgraded to the 0.5

spatial resolution by the simple arithmetic average.

3. Methodology

This section first describes a method to bring all channels fall sensors to a common nominal
resolution of 59 km. Then we discuss how to use Simultaneouss@l Overpass (SCO) technique
and Principal Component Analysis (PCA) for TB conversioaryf et al. 2011; You et al. 2017a,
2018), where GMI is taken as the reference. Further, we priificuss the linear discriminant
analysis (LDA) approach for rain/no-rain screening (Tur&le2014; You et al. 2016, 2017b). Af-
ter filtering out the raining pixels, we outline the proceslts compute the land surface emissivity
from TB observations for the non-raining pixels only (Muaghet al. 2020). Finally, we define

the emissivity temporal variation at the 0@ fgsolution.
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a. Collocation Scheme

The mean footprint resolution from these 10 satelliteseggreatly, as shown in Table 1. This
study takes the 19 GHz of SSMIS as the “nominal’ resolutiome uch finer spatial resolution
footprints (e.g., 5 km) are averaged (downgraded) to thésssy resolution. The footprints with
coarser resolution (e.g., 75 km) and resolution close torb%ile., 48 km) remain unchanged.

Specifically, for SSMIS we average 18 (699/14/14<18) pixels of 85.5 GHz and 3 pixels of
37.0 GHz to match this nominal resolution. The resolutio@B8 GHz is kept the same. For
GMI, we average 16 (5959/15/1516) pixels of 18.7 GHz, 21 pixels of 23.8 GHz, 25 pixels of
36.6 GHz, and 71 pixels of 89 GHz to approximately match th&rdesolution. For AMSR2,
we average 8 pixels of 18.7 GHz, 5 pixels of 23.8 GHz, 25 pigél36.5 GHz, and 140 pixels of
89.0 GHz to match the nominal resolution. For both ATMS and3WAA, the resolution at 23.8
and 31.4 remains unchanged. We average 4 pixels of 88.2 GHzATMS and 14 pixels of 89.0
GHz from AMSU-A to match the nominal resolution of 59 km.

To develop a rain/no-rain screening method, we use the KuilBBrgations at- 5 km resolution.
After downgrading the GMI resolution to 59 km, we average pi@ls of KuPR for each GMI
pixel in GMI-KuUPR overlapped region to match the nominabtason.

For the MERRAZ2 ancillary variables, we use the nearest gridatch the nominal resolution at
the closest time. In addition, a satellite pixel is judgethessnow/ice pixel if any of 4km GMASI

grid is snow/ice-covered in the nominal resolution foatgrivhich is omitted in this study.

b. Convert TB from other nine sensors to TB at the GMI fregigsnc

As shown in Table 1, the frequencies among these 10 radiosnate not identical. This study
is to estimate rainfall accumulation by emissivity tempeoeaiation derived from these TB obser-

vations. To this end, it is necessary to convert all TBs atlaimfrequencies to the same frequency.
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The conversion process has been detailed in You et al. (2@018). Here, only a brief summary
is provided.

The following discussion takes the GMI and SSMIS (F18) asxamle to discuss the conver-
sion process, which can be summarized into four steps: (i) thie simultaneous conical overpass
(SCO) pairs between GMI and SSMIS (Yang et al. 2011; You é2@l7a, 2018). The SCO pairs
are pixels from these two satellites, which are at most 5 kantagnd 5 minute away; (2) Decom-
pose the GMI TBs from these SCO pairs into Principal Compts@?Cs); (3) Use the SSMIS
TBs in these SCO pairs to estimate the first several PCs barliegression model. This study
selects the first four PCs, which accounts for over 90% ofdled variance; (4) Apply the coeffi-
cients derived from the SCO pairs to the whole SSMIS data. dygiso, we obtain the estimated
PCs from SSMIS. These PCs are converted back to TBs at the @hli¢ncies.

The same procedure is applied to AMSR2, SSMIS (F16 and FIMSAand AMSU-A. The
V37 GHz channel from F17 is not used since the data from Af@ll&2are not processed by the
calibration team due to the large noise. The missing V37 mblaon F17 SSMIS shows little
influence on the TB conversion. On the other hand, both ATM& ANMSU-A only have the
vertically polarized channels, and both radiometers ddhaet channels around 19 GHz. Later
analyses will show that the root-mean-square-error (RMi&kth the TB conversion based on
ATMS and AMSU-A is noticeably larger than those from AMSR2I&8SMIS. However, section
4 clearly demonstrates the improved rainfall retrievafgrenance by including these five sounders
due to the increased sample size.

In contrast to our previous studies (You et al. 2017a, 2ah& study applies the TB conversion
procedure at each 2.5yrid box. By doing so, we show later that RMSE from this cosian is
less than 3 K over almost all the areas from$@ 60N. After this TB conversion process, GMI

and other nine sensors all have channels of V19, H19, V24, M37, V89 and H89.

10
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c. Rainfall detection by linear discriminant analysis (LPA

The objective of this study is to use the emissivity under-raoning conditions to retrieve daily
rainfall accumulation. To this end, we use the linear dmarant analysis (LDA) approach (Turk
et al. 2014; You et al. 2015) to filter out the raining pixel$isfmethod is first developed based
on GMI and KuPR observations, then applied to converted T&s bther nine sensors.

Suppose there exist two training databases from KuPR i@i@ing vs. non-raining databases),
which contain multi-variables (i.e., V19,..., H89) in each database. According to Wilk31(P)

the linear discriminant function to distinguish these twoups is:

d=a' xx 1)

WhereT stands for the transposgis the discriminant vector, calculated in the following way

1 = =
a:Spool(xl—xz)

n—1 n—1
- S+ —
ng+no—2 ng+no—2

(2)

Spool =

xi andS; (i = 1,2) represent the mean vector and covariance of each grapeatvely.Spoo|
is the weighted average of the two sample covariance matitioen these two datasets, andny

are the samples size in these two groups, respectively.

d. Emissivity computation

We compute the emissivity values for each pixel at diffe@r@nnels based on Munchak et al.
(2020), which is briefly summarized here. The emissivityteets calculated from the converted
brightness temperatures (i.e., other satellites’ obsernsare converted to the GMI channel set).
This allows us to use the same atmospheric absorption ardemee angle assumptions that are

used for GMI in Munchak et al. (2020). The emissivity and agpieeric temperature and water

11
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vapor profile are retrieved using an optimal estimationiisia procedure. For the set of channels
used in this study, however, there is little independerdrimiation about the atmospheric profile,
and the retrieved emissivities are essentially those épabduce the converted brightness temper-

atures, given the space-time interpolated MERRAZ2 skin tzatpre and atmospheric profile.

e. Emissivity temporal variation definition

To derive emissivity temporal variation, it is necessargétermine when the observations from
different satellites are considered as observations Bséime location. This study first divides the
globe into a 0.5 grid box. We define any observation in the same& (abtude-longitude grid box
as observations at the same location. We choose thegyficbbox because the nominal resolution
(59 km) is approximately 0%5in the tropical region. Choosing a different grid size (e0g25 or
1°) does not affect the major conclusions of this work.

The emissivity (e) temporal variatioAég) is defined as:

Ae = &, — &, (3)

At = tg—t 4 4)

Whereg, is the current daily mean emissivity when rainfall occursg & _, is the preceding
daily mean emissivity at the same location without rainfalhe daily emissivity is computed as
the arithmetic mean from the selected satellites (e.gl@&batellites or imagers-only, see section
4e for details). A day is judged as raining day when therelisast one raining observation on that
day. No raining pixels are included in the daily mean emigssaverage procesilt is the time
difference between these two days. From now onat V19, H19, ..., V89 will be referred to

asAey19, Aengg, ..., A8gg fOr convenience.

12
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f. Bayesian retrieval method

To retrieve the daily rainfall accumulation frofe, we adopt the Bayesian retrieval technique
as implemented by You et al. (2016). It is worth mentioningttthe Bayesian retrieval concept
is widely used in the precipitation/cloud retrieval comntyiie.g., Evans et al. 1995; Kummerow
et al. 1996; Chiu and Petty 2006; Noh et al. 2006; Kim et al.&@&ano et al. 2013; Petty and Li
2013a; You et al. 2015, 2016).

Mathematically, the retrieval method can be stated asvi@lio

_ flyx) < f(x)
f(y)
FyPx) > f(x)

= TTyx) x f(xdx (5)

wherex andy represent the daily rainfall amount and the emissivity terapvariation vector

([Aevrg, Aenio, Aevpg, Aey37,Aen37]), respectively. Later analyses will show that emissivity88
GHz has very weak response to the previous rainfall, condpaith the low frequencies. There-
fore, in the rainfall retrieval process, we only include #maissivity at 19, 24 and 37 GHz and
emissivity at 89 GHz is not used.(x|y) is the posterior probability density function (PDF)of
given they, f(x) is the prior PDF ok and f (y|x) is the likelihood function of given the precipi-
tation ratex.

The expected value ofis taken as the final estimation for the daily rainfall amouvitich is
computed in the following way:

I xx f(ylx) x f(x)dx
EOY) = 3 < Fooax

_Exx f(y)
E[f(yx)]

(6)

whereE stands for the expectation.
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4. Reaults

This section first shows the TB conversion and the rain/mo-glatection statistics. Then, we
explain how to determine the rain-sensitive-region basetthe emissivity depression correspond-
ing to the different daily rainfall amount. We also explaihywve would like to retrieve the daily
rainfall amount, instead of multiple-day rainfall accuwtidn. Finally, we present the retrieval
results from four different satellite constellation expggnts and demonstrate why satellites with

varying equator crossing times are necessary for the beigtvad performance.

a. Brightness Temperature Conversion Statistics

Figure 1 shows the sample size of the SCO pairs in eachg?i® box between GMI and other
nine sensors over land. It is found that the sample size iaabemajority of boxes¥99%) for all
satellites is greater than 200, which is sufficient to entheeonversion coefficients are stable.. In
case there are not enough SCO pa«2(@0) in some grid boxes, especially from MetOp-A (Fig.
1f) and MetOp-B (Fig. 1g), we aggregate the SCO pairs in tlaeast several grid boxes until the
sample size is greater than 200.

Figure 2 shows a conversion case study at H19, H37, and HB8 gtitd box of (32.5N, 103W)
between GMI and AMSR2 (Fig. 2ato Fig. 2c), between GMI and $5M18 (Fig. 2d to Fig. 2f),
and between GMI and ATMS (Fig. 2g to Fig. 2h). The plots fronMb&-F16 and SSMIS-F17 are
similar to those from SSMIS-F18. The plots from four AMSU-@nsors are similar to those from
ATMS. It is noticed that the estimated GMI TBs from these ¢hsatellites are very close to GMI
observations. In fact, the correlation from all these cledsare over 0.95, and the bias is close to
0, which indicates that the conversion is working correcilize RMSE (shown on the figure) is
less than 3 K, except the estimated H19 from ATMS. As ment@®lier, ATMS does not have

frequency around 19 GHz. Also, only the vertically poladz#annels are available from ATMS
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(Table 1). These two ATMS features are responsible for tigeleRMSE from ATMS. Similarly,
RMSE from H19 estimated from AMSU-A is also noticeably largean those from AMSR2 and
SSMIS. Further, RMSE at H19 and H37 from AMSR?2 is smaller ttise from SSMIS, which
is likely due to the finer footprint resolution from AMSR2,dathe almost identical frequencies
between GMI and AMSR2. At 89 GHz, RMSE from AMSR2 (Fig. 2c) &6MIS-F18 (Fig. 2f)
is comparable, likely due to the large impact of the hydreoet in the atmosphere.

The RMSE global distribution at H19, H37, and H89 is shownim B for AMSR2, SSMIS-
F18, and ATMS. Our analysis shows that over 95% of the gridehBMSE less than 3 K, which
corresponds te-0.01 emissivity error. Consistent with the case study, RM8E ATMS is the
largest in almost all regions. RMSE at H19 and H37 GHz from AA23s noticeably smaller than
those from SSMIS (cf. Fig. 3a and Fig. 3d, cf. Fig. 3b and Fig). 3ror H89 channel, RMSE
from SSMIS and AMSR2 are of comparable magnitude. Analyassdiso been conducted for all
the vertically polarized channels (V19, V24, V37, and V88|ding very similar results to those

from the horizontally polarized channels.

b. Rainfall Detection Statistics

Similar to the TB conversion process, we refine our previpdsleloped LDA rainfall detection

method by applying it to each 2.§rid box. To ensure the stability of the detection statsstibe

number of raining pixels in each 2.grid box is required to be at least 500. When there are less

than 500 raining pixels, we aggregate the observationsimétarest several 2.§rid boxes until
the sample size is greater than or equal to 500. At each grdabdiscriminant threshold value is
selected to maximize the Heidke Skill Score (HSS).

Figure 4 shows that the Probability of Detection (POD) an&H&e over 0.7 over the majority

of the region, and the False Alarm Rate (FAR) is less than 6v@% most of the region. These

15



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

detection statistics are similar to those from the officiatibinal Aeronautics and Space Admin-
istration (NASA) and the Japan Aerospace Exploration AgédaXA)’s precipitation detection
algorithms (You et al. 2020).

We would like to emphasize that in the daily rainfall estiroatprocess, we first filter out the
raining pixels judged by the LDA detection method. Therefdhe signal we use is essentially the

soil emission variation due to the rainfall impact, not tlyetometeors’ effect in the air.

c. Rainfall Sensitive Regions

Previous studies (Brocca et al. 2014; McColl et al. 2017 nsdtbthat rainfall has little impact
on the land surface soil moisture derived from microwavexaeter observations at 1.5 GHz over
densely vegetated regions (e.g., Amazon, Central Afriod,Eastern United States). This study
primarily exploits the soil moisture change due to the récamfall impact at the low frequency
channels. Therefore, we would like first to select rainfalistive regions, by assessing the surface
emissivity response to rainfall over different regions.isTanalysis is based on the emissivity
derived from GMI only to reduce the computational time, &ast of from all 10 satellites.

Figure 5 shows the emissivity depression at H19 and H37 sporeding to different previous
1-day rainfall accumulation. Specifically, we obtain thepous 1-day rainfall amount corre-
sponding to each pixel from the half-hour IMERG Final-rurogiuct. Then, we compute the
emissivity differences between wet (rainfall occurs in ginevious one day) and dry (no rainfall
in the previous one day) conditions at the OrBsolution. For the wet condition, the previous
1-day rainfall accumulation (indicated by R on the Fig. Sjuidher grouped into four categories,
including 0<R<5, 5<R<10, 10<R<20, and R-20 mm.

As illustrated in Fig. 5, emissivity decreases over moshefland areas after rainfall events in

the previous day, and the emissivity depression increaséisearainfall amount becomes larger.
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The emissivity drop is particularly evident with rainfal@imulation greater than 20 mm over Sa-
hel, Southern Africa, Middle East, Indian sub-contineotthwest China, Australia continent, and
western United States (Fig. 5d and Fig. 5h). As expectederthissivity depression magnitude
is smaller at H37 than at H19 since 19 GHz is more sensitivedastrface properties (e.g., soil
moisture). The emissivity depression at H89 (not shownyénesmaller than H37. Similar analy-
sis has also been performed for the vertical polarized atlanftom which the rainfall response is
weaker than their horizontally polarized counterpartsesihfeatures (e.g., lower frequency with
larger emissivity drop due to the rainfall impact) are weibwn from previous studies (Jackson
1993; Ferraro et al. 2013; You et al. 2014; Munchak et al. 20B8sed on these analyses, we only
use the emissivity values at V19, H19, V24, V37 and H37 fordhgy rainfall retrieval and no
emissivity values from 89 GHz are included in the retrievalgess.

This study attempts to exploit the emissivity depressignaiure due to the recent rainfall im-
pact. For this purpose, we define regions with emissivitypdrbat least 0.02 with previous 1-day
rainfall accumulation greater than 20 mm as “rainfall-s&resregions” and retrieval is only per-

formed over these regions.

d. Correlation between emissivity and rainfall accumuwdatat different time scales

It is desirable to understand how long the rainfall impagct st. To this end, we compute
the correlation between emissivity under rain-free caodg and previous n-hour rainfall accu-
mulation at the 0.5resolution over the rainfall-sensitive-regions. Similathe rainfall-sensitive
analysis, this analysis also only uses the emissivity édritom GMI to reduce the computational
time.

We first attach the previous rainfall accumulations of 13hr, 6-hr, 12-hr and 24-hr to each

emissivity pixel. Then, we compute the correlation betweenssivity and these rainfall accumu-
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lations at each 0™5grid box. The purpose is to check when the correlation pdalks.6 shows that
the correlation magnitude between emissivity and raisfatumulation increases quickly from 1-
hr (Fig. 6a) to 12-hr (Fig. 6d) for H19, which is especiallydant over Australia. While for the
correlation from 12-hr (Fig. 6d) to 24-hr (Fig. 6e), such acrease is marginal. The H37 channel
exhibits similar correlation temporal variations (Fig.téfFig. 6j).

To more clearly show this correlation variation, we plot thistogram of the correlation be-
tween emissivity and previous N-hr rainfall accumulatidhvaries from 1 to 24-hr). The curves
corresponding to 12-hr (black) and 24-hr (purple) are Hgavierlapped (Fig. 7), demonstrating
that the correlations between emissivity and 12-hr raliaatumulation is very similar to the cor-
relation between emissivity and 24-hr rainfall accumuolati This implies that previous rainfall
being 13 to 24-hr away from that pixel has little impact to #missivity value of that pixel. In
other words, rainfall impact at H19 and H37 often persissuali2-hr. Therefore, this behavior
supports our goal to estimate the daily rainfall accumatatiOf course, the rainfall impact can
propagate into the next day, depending on at which hour th&feoccurs. While 2-day or 3-day

accumulations might be more accurate, most applicaticefeipdaily accumulations.

e. Rainfall retrieval result

This section begins with a case study to explain in detail Hoewetrieval algorithm is imple-
mented. Then we test four retrieval experiments to show veinygul 0 satellites produces the most
accurate retrieval result.

Figure 8a shows the time series of emissivity at H19 over ecsadl grid box (32N-32.5°N,
99.5W-100°W) in the Central Texas region. The LDA detection approachcates that rainfall
occurs on 23, 24, and 25 May 2014 (shown as red crosses). QrdZ2baMay 2014, these rainfall

occurrences correspond very well with the “cold” TB at V8% wn in Fig. 8b. On 23 May 2014,
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the TB depression at V89 is not as obvious as that on 24 and 3520k4. However, IMERG
rainfall product indeed shows the daily rainfall amount & rhm on 23 May 2014.

The daily rainfall retrieval algorithm takes the followisteps: (1) filter out the raining pixels
(indicated by the red crosses) from 23 May to 25 May 2014 bezdioe computed emissivities
for these pixels are affected by the hydrometeors in the spmere; (2) compute the daily mean
emissivity using the non-raining values; (3) compute théydaean emissivity on the preceding
non-raining day (i.e., 22 May 2014, background emissiyi@§) obtain the emissivity difference
between raining day (23, 24, and 25 May 2014) and backgrommsisevity (22 May 2014). For
demonstration purposes, Fig. 8a only shows the emissieitypbral variation at H19. In the
retrieval process, we use the emissivity variation at 19a2d 37 GHz (i.eAen19, A&v19, N804,
Aegs7, Aenzy). This Ae computation procedure is applied at each® @Bd box over the rainfall-
sensitive regions.

Next, we design four experiments to demonstrate the adgastaf using multiple satellites. In
each experiment, we randomly select 80% data at each griddthe training dataset, while the
retrieval is performed on the other 20% data. In the first arpent,Ae at each channel is calcu-
lated by GMI observations only. The second experiment cdegdie using all five imagers (four
sun-synchronous satellites shown in blue color in Fig. 83Juding GMI, AMSR2, and three
SSMISs. Clearly, the Equator Crossing Times (ECTs) from &id F18 are, on average, only
about 10 minutes apart, indicating that they observe theedacation at nearly the same time of
day. In the third experiments, we select six sensors, imetu@MI| and five other radiometers on-
board the sun-synchronous satellites (i.e., AMSR2 onbG&O®M, AMSU-A onboard NOAA19,
SSMIS onboard F16 and F17, and AMSU-A onboard Metop-A). Téection of these five sun-
synchronous sensors is based on the fact that ECTs from tleevery different, as shown in Fig.

9. By doing so, the emissivity temporal variation can bedyetaptured. The fourth experiments
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use observations from all 10 sensors to comggeFor convenience, these four experiments are
referred as “GMI only”, “5-imagers”, “6-satellites”, an@fl-10-satellites”.

When only the GMI is used to compule, the retrieval performance is rather poor, as indicated
by the correlation being 0.25 and RMSE being 11.36 mm (Figa).10t is immediately clear
that the 5-imagers scheme produces much improved retresalts. Specifically, the correlation
increases to 0.49 and RMSE decreases to 7.28 mm (Fig. 10bheFanalysis reveals several
reasons responsible for this large retrieval improvem&hich are all related to the observation
sample size. First, the time difference (i&t,in Eq. 2, the time difference between the raining
day and the non-raining day) is shorter when using five imatgen only using GMI, as shown
in Fig. 11. The time difference is one-day for over 85% caskemusing five imagers, which
means that one can find a non-raining background in the pregeldy when using five imagers
for over 85% of the time. In contrast, only about 34% of theedtione can find a non-raining
background when only GMI observations are used. For thenmajf the time, the non-raining
background is two, three, or even more days away when only GMs$ed. With the longer time
difference, it is more likely that the emissivity varies dodactors other than the rainfall impact,
or the rainfall effect might be missed. Second, with moreeotetions from five satellites, the
diurnal cycle of the emissivity can be much better captuinaa that using GMI observations only.
In fact, on average, the daily sample size over each @risl box is 10 when using 5 imagers,
while itis only 1 or 2 from GMI. Lin and Minnis (2000) found ththe emissivity of 19 GHz from
Special Sensor Microwave Imager (SSM/I) at the early ma06:40 local time) is about 0.06
less than that at other times over a Southern Great Plams aitd they concluded that dew and
surface rewetting effects may be responsible for the ewiigsiiurnal cycle. The large emissivity
discrepancy between daytime and nighttime (up to 0.1 overesarid regions) has also been

noticed by Norouzi et al. (2012) using AMSR-E observatiaigough they pointed out that the
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different diurnal cycles between the skin temperature hrdoil temperature are responsible for
the large emissivity discrepancy. Regardless of the upitgrmechanisms causing the emissivity
diurnal cycle, more observations from multiple satellitas better capture the daily emissivity
variation compared with those from a single satellite. @hihe increased temporal sampling
from multiple satellites provides a better chance of an nladg®n right after the rainfall has ended,

when its effect on emissivity is maximum.

By carefully selecting six sensors with much different ECthe retrieval performance is further
improved, indicated by the correlation being 0.58 and RM8iad6.99 mm (Fig. 10c). The time
difference between using five imagers and using six sensaisilar (Fig. 11). That is, over 85%
of the time difference in both experiments is one day. Howevih the much variable ECTs from
the 6-satellites scheme, the emissivity variation can lteebeaptured than that in the 5-imagers
scheme. As mentioned previously, ECTs from F17 and F18 axesimmilar from 2014 to 2018
(Fig. 9). By using observations from all-10-satellitesestie, the retrieval results only improve
marginally with the correlation being 0.60 and RMSE being26mm, compared with that from
the 6-satellites scheme. The marginal improvementis égdesince ECTs from several satellite is
similar (Fig. 9, Metop-A and MetopB, F17, F18 and NOAA18, AREand ATMS). This means
that observations from these satellites with similar ECJd létle new information.

A common feature in the retrieval result from Fig. 10b to FiQd is that for rain rates less than
1 mm, the retrieval algorithm has little skill. This phenamea may reflect the fact that the soill

moisture has little response for daily rainfall accumuwlas less than 1 mm.

5. Conclusions and Discussions

This study presents a rainfall retrieval algorithm to estiethe daily rainfall accumulation from

non-raining satellite observations from 10 satellitegjuding GMI, AMSR2, SSMIS onboard
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F16, F17, and F18 satellites, ATMS onboard SNPP sateliité,AAMSU-A onboard NOAA-18,
NOAA-19, MetOp-A and MetOp-B satellites. In contrast to thaditionally used ice-scattering
signal over land, we use the land surface emissivity variegignature due to the rainfall impact for
rainfall retrieval by filtering out the raining pixels. Tompute the emissivity temporal variation,
we first convert frequencies from other sensors to GMI fraegies from 19 (or 24) to 89 GHz.
Results show that RMSE is less than 3 K over the vast majofitiyeoregions for all nine sensors
and for all channels, leading to about 0.01 emissivity utadety.

The objective of this study is to use the non-raining pixeleampute the emissivity. To this
end, we need to filter out the raining pixels first. Our stet@tmethod shows strong capability to
detect raining pixel, indicating by POD and HSS greater ;a0 over the majority of the region.
The rainfall retrieval algorithm is only applied to the ril-sensitive-region, defined as the areas
where the land surface emissivity drops at least 0.02 at ldt@sponding to the previous 1-day
rainfall accumulation greater than 20 mm.

While the best rainfall retrieval performance is achievgduking observations from all-10-
satellites scheme, with the correlation and RMSE being 8reD6.52 mm, analysis shows that by
selecting GMI and five sensors onboard the sun-synchroratebites with much different ECTs
(i.e., 6-satellites scheme), the retrieval performanasoimparable to that from 10 satellites, as
indicated by the correlation of 0.58 and RMSE of 6.99 mm. Intcast, the retrieval results from
the 5-imagers scheme are noticeably worse than those lGtsatand all-10-satellites schemes
because the emissivity variation can be much better captyreising all 10 satellites or six satel-
lites with much different ECTs, compared with only using fiveagers. Furthermore, there is
low retrieval skill when only the GMI observations are use@ ¢lo the much smaller sample size,
which leads to a longer time difference between the rainengahd the non-raining day. Also, it

is not possible to capture the emissivity diurnal cycle V@I observations only.

22



487

488

490

491

Future work seeks to further include the currently operatioadiometers, including ATMS on-
board NOAA-20, AMSU-A onboard Metop-C, WindSat, and Feng8iMicrowave Radiometer
Imager (MWRI). With more observations, the retrieval pemrance from our method is expected
to be further improved. In particular, we expect a largeieed performance improvement when
the passive microwave radiometer observations around&@m@nd 11:00 am are available (see

Fig. 9) in the future.
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650 TABLE 1. Channels used for rainfall retrieval from each sensovékical polarization, H-horizontal po-

6!

a

1 larization). The sensors employed the cross-track scgrstiheme is indicated by the superscript "*”. Other
2 SENSOrs use the conical scanning scheme. For the croksstraigning sensors, the polarization (V/H) and the

s Mean footprint resolution are for the pixel at nadir.

Satellite Name  Sensor Name  Freq (GHz) Freq (GHz) Freq (GHz) req fGHz)

GPM GMI 18.7 (V/H, 15km)  23.8 (V, 13 km) 36.6 (V/H, 12km)  89.0/d, 7 km)
GCOM AMSR2 18.7 (V/H, 22 km)  23.8 (V/H, 26 km)  36.5 (V/H, 12 km) 89.0 (V/H, 5 km)
F16 SSMIS 19.4 (V/H,59 km)  21.3 (V, 59 km) 37.0 (V/H,36 km) B%V/H, 14 km)
F17 SSMIS 19.4 (V/H,59 km)  21.3 (V, 59 km) 37.0 (V/H,36 km) B%V/H, 14 km)
F18 SSMIS 19.4 (V/H, 59 km)  21.3 (V, 59 km) 37.0 (V/H, 36 km) BHV/H, 14 km)
NPP ATMS 23.8 (V, 75 km) 31.4 (V, 75 km) 88.2 (V, 32 km)
NOAA-18 AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)
NOAA-19 AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)
MetOp-A AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)
MetOp-B AMSU-A* 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)
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First column: scatter plots between GMI TBs and estimated ff@n AMSR2 at (a) H19
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(a) except for Heidke Skill Score (HSS). e

First column: emissivity at H19, wet (rainfall occurs in pi@us one day) minus dry (no
rainfall in previous one day) conditions. The rainfall acauation (R) in previous 1-day is
separated into four categories{B<5, 5<R<10, 10<R<20, and R>20), which is com-
puted from the half-hour IMERG final run (version 06A) protusecond column: same as
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hour rainfall accumulation. N stands for 1, 3, 6, 12, and Zt.domparison, all histograms
are vertically scaled to unity by their maximum histograeginency counts. Rainfall accu-
mulation is computed from the half-hour IMERG final run (versO6A) product.

(a) Time series of emisivity at H19 (eh19) from 21 May 2014 6oNay 2014 at the grid
box (100W, 3ZN). The “blue” circle indicates the satellite observatipaad the “red”
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Fig. 11.

(a) Density scatter plot between IMERG daily rainfall amband retrieved daily rainfall

amount based on the emissivity temporal variative) @t 19, 24 and 37 GHz, derived from

GMI observations only. (b) Same as (a) except thatAbés derived from five imagers,

including GMI, AMSR2, and three SSMIS. (c) Same as (a) extteghe is derived from six

sensors, including GMI and five other radiometers onboaedstin-synchronous satellites

(i.e., AMSR2 onboard GCOM, AMSU-A onboard NOAA19, SSMIS oabd F16 and F17,

and AMSU-A onboard Metop-A). These five sensors have veffgriht equator crossing

time, as shown in Fig. 9. (d) save as (a) except thal\this derived from all 10 satellites. . . 45

The time difference between raining day and non-raining (@agkground), as defined in
Eq. 2, for all four retrieval experiments showninFig. 10. . . . . . . . . . . 46
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(a) AMSR2-GCOM meets KuPR, sample size in 2.5° grid box (g) MHS-MetOpB meets KuPR, sample size in 2.5° grid box
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708 FiG. 1. Coincident observation number in each°2y8id box between GMI and other 9 sensors, including
0o AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18, ATMS-SNPP, AMUB&tOpA, AMSUA-MetOpB, AMSUA

m0  -NOAA18, and AMSUA -NOAA19. The number is scaled by 100 ineatot. All data are from March 2014
= (launch of the GPM satellite) to December 2018.
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72 FIG. 2. First column: scatter plots between GMI TBs and estichds from AMSR2 at (a) H19, (b) H37,
ns and (c) H89, using the simultaneous conical overpass paisden GMI and AMSR2 over the grid box of
ne  (32°N, 103W) from March 2014 (launch of the GPM satellite) to Decemb@t& Second column: same as
ns  the first column except between GMI and SSMIS-F18. Third mwlusame as the first column except between

ne  GMI and ATMS-SNPP.
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N (d) RMSE for H19 based on SSMIS (g) RMSE for H19 based on ATMS in each 2.5° grid box
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_(b) RMSE for H37 based on AMSR2 in each 2.5° grid box (e) RMSE for H37 based on SSMIS-F18 in each 2.5° grid box (h) RMSE for H37 based on ATMS in each 2.5° grid box
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77 FiG. 3. First column: the root-mean-square-error (RMSE) iheéa® grid box between GMI and AMSR?2 at
s (a) H19, (b) H37, and (c) H89. Second column: same as the fihsth except between GMI and SSMIS-F18.

~
oy

7o Third column: same as the first column except between GMI arld2xSNPP. All data are from March 2014
=0 (launch of the GPM satellite) to December 2018.
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=3 Same as (a) except for False Alarm Rate (FAR). (¢) Same ag¢apefor Heidke Skill Score (HSS).
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724 FiG. 5. First column: emissivity at H19, wet (rainfall occursgrevious one day) minus dry (no rainfall in
=5 previous one day) conditions. The rainfall accumulatiohifRorevious 1-day is separated into four categories
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=z 06A) product. Second column: same as the first column exoept37.
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728 FIG. 6. First column: correlation between emissivity at h191@hand the previous N-hour rainfall accumu-
=o lation. N stands for 1, 3, 6, 12, and 24, corresponding to thedis from (a) to (e). Second column: same as the
=0 first column except for emissivity at h37 (eh37). Rainfalt@mulation is computed from the half-hour IMERG

= final run (version 06A) product.
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732 FiG. 7. Histogram of correlation coefficients between emisgiat h19 (eh19) and the previous N-hour
s rainfall accumulation. N stands for 1, 3, 6, 12, and 24. Fanparison, all histograms are vertically scaled
74 10 Unity by their maximum histogram frequency counts. Ralrdccumulation is computed from the half-hour

s IMERG final run (version 06A) product.
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FiG. 8. (a) Time series of emisivity at H19 (eh19) from 21 May 26426 May 2014 at the grid box (10,

32°N). The “blue” circle indicates the satellite observatioasd the “red” cross indicates the raining pixels

judeged by the LDA method, which are discarded in the redfipvocess. (b) Same as (a) except for V89. (c)

Daily IMERG rainfall accumulation from 21 May 2014 to 26 Ma94 at the grid box (10@W, 32°N).
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740

741

742

743

744

FiG. 9. Equator crossing time (local time in the morning) forengun-synchronous satellites. Satellites with
imagers onboard are in blue (i.e., AMSR2 onboard GCOM, SSpfilsbard F16, F17, and F18), and satellites
with sounders onboard are in red (i.e., ATMS onboard SNPPSAM onboard NOAA-18, NOAA-19, MetOp-

A, MetOp-B). The GPM satellite has a precessing orbit, whigkans that it overpasses a certain location at

varying times throughout the day.
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725 Fic. 10. (a) Density scatter plot between IMERG daily rainfatiaunt and retrieved daily rainfall amount
us based on the emissivity temporal variatidke) at 19, 24 and 37 GHz, derived from GMI observations only.
«z (b) Same as (a) except that the is derived from five imagers, including GMI, AMSR2, and th&8MIS. (c)

us  Same as (a) except thee is derived from six sensors, including GMI and five other omaiéters onboard the
us sun-synchronous satellites (i.e., AMSR2 onboard GCOM, AMSonboard NOAA19, SSMIS onboard F16
= and F17, and AMSU-A onboard Metop-A). These five sensors kiavg different equator crossing time, as

= shownin Fig. 9. (d) save as (a) except thatMeas derived from all 10 satellites.

45



90

I GMI-only
[ 5-imagers

80 I 6-—satellites
I all-10-satellites

Percentage (%)

0 1 2 3 4 5 6
Time difference (day)

752 FiG. 11. The time difference between raining day and non-rgidely (background), as defined in Eq. 2, for

s all four retrieval experiments shown in Fig. 10.

46



