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ABSTRACT

Rainfall retrieval algorithms for passive microwave radiometers often ex-

ploits the brightness temperature depression due to ice scattering at high fre-

quency channels (≥ 85 GHz) over land. This study presents an alternate

method to estimate the daily rainfall amount using the emissivity temporal

variation (i.e.,∆e) under rain-free conditions at low frequency channels (19,

24 and 37 GHz). Emissivity is derived from 10 passive microwave radiome-

ters, including the Global Precipitation Measurement (GPM) Microwave Im-

ager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2),

three Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced

Technology Microwave Sounder (ATMS), and four Advanced Microwave

Sounding Unit-A (AMSU-A). Four different satellite combination schemes

are used to derive the∆e for daily rainfall estimates. They are all-10-satellites,

5-imagers, 6-satellites with very different equator crossing times, and GMI-

only. Results show that∆efrom all-10-satellites has the best performance with

a correlation of 0.60 and RMSE of 6.52 mm, comparing with the integrated

multi-satellite retrievals (IMERG) final run product. The 6-satellites scheme

has comparable performance with all-10-satellites scheme. The 5-imagers

scheme performs noticeably worse with a correlation of 0.49and RMSE of

7.28 mm, while the GMI-only scheme performs the worst with a correlation of

0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers

and GMI-only schemes can be explained by the much longer revisit time,

which cannot accurately capture the emissivity temporal variation.
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1. Introduction36

Spaceborne passive microwave radiometers have long been recognized as key instruments for37

global rainfall estimates over land. Early studies in 1980sfrom the Scanning Multichannel Mi-38

crowave Radiometer (SSMR) onboard Nimbus-7 satellite showed that brightness temperature39

(TB) has a clear depression signature under thunderstorms due to the ice particles’ scattering40

effect in the atmosphere (Spencer et al. 1983a,b). Many satellites after Nimbus-7 carried the ra-41

diometers capable of estimating the surface rainfall rate over land via this ice scattering concept.42

These radiometers include Special Sensor Microwave Imager(SSMI), Special Sensor Microwave43

Imager/Sounder (SSMIS), Tropical Rainfall Measuring Mission Microwave Imager (TMI), Ad-44

vanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) and its successor,45

AMSR2, Global Precipitation Measurement (GPM) Microwave Imager (GMI), MicroWave Ra-46

diation Imager (MWRI), Advanced Microwave Sounding Unit-Aand B (AMSU-A/B), and Ad-47

vanced Technology Microwave Sounder (ATMS). Rainfall estimates from these radiometers serve48

as the backbone for generating the widely-used global precipitation datasets, including NASA’s49

integrated multi-satellite retrievals (IMERG) (Huffman et al. 2015), Climate Prediction Center’s50

morphing technique (CMORPH) (Xie et al. 2017), and JAXA’s Global Satellite Mapping of Pre-51

cipitation (GSMaP) dataset (Kubota et al. 2007).52

Rainfall retrieval algorithm development has been extensively researched for these passive mi-53

crowave radiometers. For example, Spencer et al. (1989) proposed the “Polarization Corrected54

Temperature” (PCT) to detect and retrieve rainfall over land from SSMI. Grody (1991) developed55

the “scattering index” (SI) technique to estimate the rainfall over land for SSMI, which is later56

improved by Ferraro et al. (1994); Ferraro and Marks (1995).Both PCT and SI methods primar-57

ily rely on the TB observations at 85 GHz over land, which is the highest available frequency58
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on SSMI. With the successful launch of the TRMM satellite in 1997, many retrieval algorithms59

for precipitation over land have also been developed for TMI(Wang et al. 2009; Gopalan et al.60

2010; Petty and Li 2013b; Islam et al. 2014). In addition, retrieval algorithms have also been61

developed for sensors with even higher frequencies (e.g., 150 and 183 GHz), including SSMIS62

(You et al. 2015) and ATMS (Surussavadee and Staelin 2010; You et al. 2015). Different from63

these sensor-specific algorithms, generic retrieval algorithms with the capability of adapting to64

all these radiometers were also developed, including the Goddard profiling algorithm (GPROF)65

(Kummerow et al. 2015), the Microwave Integrated RetrievalSystem (MiRS) (Boukabara et al.66

2011), GSMaP level-2 precipitation retrieval algorithm (Aonashi et al. 2009; Shige et al. 2009),67

and the one-dimensional variational (1DVAR) retrieval model (Meng et al. 2017).68

To more accurately estimate the surface rainfall rate, these “hydrometeor-based” algorithms69

have to mitigate the influence from the land surface, since TBreflects the integrated effect from70

the hydrometeors in the air and the surface emission. To thisend, the entire globe is divided into 571

by 5 degree grid boxes in each season in the GSMaP retrieval process (Aonashi et al. 2009). Simi-72

larly, ancillary land surface type information (Aires et al. 2011) has been used by several retrieval73

algorithms (You et al. 2015; Kummerow et al. 2015). To largely avoid the possible surface con-74

tamination, instead of using the signatures from window channels (e.g., 85GHz), Staelin and Chen75

(2000) developed a rainfall retrieval algorithm solely dependent on the microwave observations76

near opaque water vapor and oxygen absorption channels (183GHz and 52 GHz ).77

Brocca et al. (2014) proposed a conceptually different rainfall retrieval algorithm by using the78

soil moisture datasets derived from spaceborne microwave sensors. They concluded that the re-79

trieved 5-day rainfall accumulation from the soil moisturedatasets agree reasonably well with a80

ground gauge analysis dataset, indicated by the correlation being as large as 0.54. The ability81

to retrieve rainfall from the soil moisture is further demonstrated by Koster et al. (2016), which82
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showed that satellite missions designed for soil moisture observations indeed contain valuable83

rainfall information. In fact, soil moisture information has also been exploited to improve the84

hydrometeor-based rainfall retrieval results (Crow et al.2009; Pellarin et al. 2013).85

There are key differences between these two types of rainfall algorithms, which are referred to86

as “hydrometeor-based” and “soil-moisture-based” retrieval algorithms for convenience. First, the87

microwave sensors designed for soil moisture measurement utilize lower frequencies than those88

suitable for hydrometeor measurement. For example, the radiometers onboard the Soil Moisture89

Active-Passive (SMAP) satellite and the Soil Moisture and Ocean Salinity (SMOS) satellite have a90

frequency of 1.4 GHz. The Advanced Scatterometer (ASCAT) onboard the MetOp satellites oper-91

ates at∼5.2 GHz. In contrast, the primary frequencies to measure theice scattering over land from92

passive microwave radiometers are around 85 GHz and higher (e.g., 150 and 183 GHz). The lower93

frequencies used for soil moisture measurement can penetrate a thicker layer of soil and thereby94

provide more information about the rainfall impact on the soil, while the higher frequencies are95

more sensitive to the hydrometeors in the atmosphere. Second, the hydrometeor-based algorithm96

attempts to minimize the possible surface contamination (e.g., soil moisture, surface temperature,97

and vegetation). On the contrary, the soil-moisture-basedalgorithm attempts to limit the impact98

from the hydrometeors. Third, the hydrometeor-based algorithm uses the instantaneous observa-99

tions at the time of the overpass, providing a snapshot of therainfall rate at that time. In contrast,100

the soil-moisture-based algorithms use observations thatare not contaminated by hydrometeors101

in the atmosphere, and therefore are more representative ofaccumulated rainfall over some time102

prior to the observation.103

The objective of this study is to estimate the daily rainfallaccumulation from the land surface104

emissivity variation due to the rainfall impact. Previous work showed that the land surface mi-105

crowave emissivity tends to decrease after rainfall due to the increase of soil moisture (Jackson106
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1993; Ferraro et al. 2013; You et al. 2014; Yin et al. 2019). Inother words, the land surface mi-107

crowave emissivity variation is directly related to soil moisture change. Therefore, in essence, this108

work attempts to relate the soil moisture variation to the rainfall accumulation, similar to Brocca109

et al. (2014) and Koster et al. (2016). The key innovation is that we apply the soil-moisture-based110

retrieval concept to the low frequency channels (19, 24 and 37 GHz) from 10 satellites (Table 1),111

instead of soil moisture-specific channels (1.4 GHz) that are only available on one or two satellites.112

Previous rainfall retrieval algorithms for these 10 sensors estimated the instantaneous rainfall113

rate based on the ice scattering signal primarily from the high frequencies (≥85 GHz) (e.g., Ferraro114

et al. 2000; Ebtehaj et al. 2015; You et al. 2015; Kummerow et al. 2015; You et al. 2016). For the115

lower frequency channels, the ice scattering signal is lesspronounced over land due to the longer116

wavelength (Spencer et al. 1983a). In addition, the high andhighly variable land surface emissivity117

often masks out the liquid raindrop emission signal at the low frequency channels (Prigent et al.118

2006; Munchak et al. 2020). For these reasons, these low frequency channels are either not used or119

play a secondary role in the instantaneous rainfall retrieval process. In contrast, this study exploits120

the soil moisture change (instead of the hydrometeors in theair) due to the recent rainfall impact121

by using the non-raining observations at the low frequencies (19, 24, and 37 GHz) for daily rainfall122

accumulation retrieval. It is worth mentioning that the non-raining observations account for∼90%123

of the overall observations.124

It is noted that Birman et al. (2015) used the surface emissivities at 89 GHz from multiple125

satellites to estimate the daily rainfall accumulation over France. As stated in the study, they126

use the“effective emissivity that includes the atmospheric contribution in cases with cloudy/rainy127

conditions”, while this study only uses the non-raining emissivities for daily rainfall estimates at128

low frequency channels, including 19, 24 and 37 GHz.129
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The data used in this study are described in section 2. The methodology, including the TB130

conversion, the land surface emissivity computation, the rainfall detection, and the daily rainfall131

amount estimation, are provided in section 3. Section 4 presents the retrieval results from the132

microwave emissivity temporal variation. Finally, the conclusions are summarized in section 5.133

2. Data134

This study primarily uses three types of datasets: the satellite TB observations, the IMERG final-135

run rainfall product, and the GPM Ku-band Precipitation Radar (KuPR) rainfall observations.136

TB observations are from 10 passive microwave radiometers,including three SSMIS onboard137

the Defense Meteorological Satellite Program (DMSP) F16, F17 and F18 satellites, AMSR2 on-138

board the Global Change Observation Mission-Water (GCOM-W) satellite, GMI onboard the139

GPM core observatory satellite, four AMSU-A onboard NOAA-18, NOAA19, MetOp-A and140

MetOp-B satellites, and ATMS onboard the Suomi National Polar-orbiting Partnership (SNPP)141

satellite. The channels used in study and their mean footprint resolution are listed in Table 1.142

These channels often have different footprint resolutions. Section 3 introduces a method to bring143

these channels to a common resolution. Additionally, the frequencies among these satellites are144

not identical (e.g., 18.7 v.s. 19.4 GHz). The slight frequency difference results in different TBs145

for the same surface background and hydrometeor profile (Yang et al. 2014). We demonstrate a146

method to convert TBs from other nine sensors to GMI frequencies in section 3. For convenience,147

we do not distinguish the slight frequency differences among these sensors from now on unless148

otherwise specified. These channels are referred to as V19, H19, V24, V37, H37, V89 and H89.149

To derive the land surface emissivity at these frequencies,we use hourly surface temperature and150

3-hourly temperature and humidity profiles at the 0.5◦×0.625◦ resolution from Modern-Era Ret-151

rospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al. 2017). We152
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also use the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)’s153

daily Global 4km Multisensor Automated Snow/Ice map (GMASI) to filter out pixels associated154

with the snow/ice on the ground (Romanov 2017).155

The half-hour IMERG final run (version 06A) product at 0.1 degree is used to investigate the156

rainfall impact duration period. The IMERG final run daily dataset at 0.1 degree spatial resolution157

is taken as the surface “reference” rainfall dataset for retrieval. In addition, we use the KuPR158

rainfall observations along with the GMI TB observations totrain a rain/no-rain screening method,159

which is applied to all TB observations to filter out the raining pixels (more details in section 3c).160

Data in this study are all from March 2014 (launch of the GPM satellite) to December 2018 over161

the 60◦S-60◦N land areas. The pixel level observations (TB and KuPR) are brought to a nominal162

resolution of 59 km (see section 3 for more details). The IMERG data are downgraded to the 0.5◦
163

spatial resolution by the simple arithmetic average.164

3. Methodology165

This section first describes a method to bring all channels from all sensors to a common nominal166

resolution of 59 km. Then we discuss how to use Simultaneous Conical Overpass (SCO) technique167

and Principal Component Analysis (PCA) for TB conversion (Yang et al. 2011; You et al. 2017a,168

2018), where GMI is taken as the reference. Further, we briefly discuss the linear discriminant169

analysis (LDA) approach for rain/no-rain screening (Turk et al. 2014; You et al. 2016, 2017b). Af-170

ter filtering out the raining pixels, we outline the procedure to compute the land surface emissivity171

from TB observations for the non-raining pixels only (Munchak et al. 2020). Finally, we define172

the emissivity temporal variation at the 0.5◦ resolution.173
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a. Collocation Scheme174

The mean footprint resolution from these 10 satellites varies greatly, as shown in Table 1. This175

study takes the 19 GHz of SSMIS as the “nominal” resolution. The much finer spatial resolution176

footprints (e.g., 5 km) are averaged (downgraded) to this coarser resolution. The footprints with177

coarser resolution (e.g., 75 km) and resolution close to 59 km (i.e., 48 km) remain unchanged.178

Specifically, for SSMIS we average 18 (59×59/14/14≈18) pixels of 85.5 GHz and 3 pixels of179

37.0 GHz to match this nominal resolution. The resolution at21.3 GHz is kept the same. For180

GMI, we average 16 (59×59/15/15≈16) pixels of 18.7 GHz, 21 pixels of 23.8 GHz, 25 pixels of181

36.6 GHz, and 71 pixels of 89 GHz to approximately match the 59km resolution. For AMSR2,182

we average 8 pixels of 18.7 GHz, 5 pixels of 23.8 GHz, 25 pixelsof 36.5 GHz, and 140 pixels of183

89.0 GHz to match the nominal resolution. For both ATMS and AMSU-A, the resolution at 23.8184

and 31.4 remains unchanged. We average 4 pixels of 88.2 GHz from ATMS and 14 pixels of 89.0185

GHz from AMSU-A to match the nominal resolution of 59 km.186

To develop a rain/no-rain screening method, we use the KuPR observations at∼ 5 km resolution.187

After downgrading the GMI resolution to 59 km, we average 140pixels of KuPR for each GMI188

pixel in GMI-KuPR overlapped region to match the nominal resolution.189

For the MERRA2 ancillary variables, we use the nearest grid to match the nominal resolution at190

the closest time. In addition, a satellite pixel is judged asthe snow/ice pixel if any of 4km GMASI191

grid is snow/ice-covered in the nominal resolution footprint, which is omitted in this study.192

b. Convert TB from other nine sensors to TB at the GMI frequencies193

As shown in Table 1, the frequencies among these 10 radiometers are not identical. This study194

is to estimate rainfall accumulation by emissivity temporal variation derived from these TB obser-195

vations. To this end, it is necessary to convert all TBs at similar frequencies to the same frequency.196
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The conversion process has been detailed in You et al. (2017a, 2018). Here, only a brief summary197

is provided.198

The following discussion takes the GMI and SSMIS (F18) as an example to discuss the conver-199

sion process, which can be summarized into four steps: (1) Find the simultaneous conical overpass200

(SCO) pairs between GMI and SSMIS (Yang et al. 2011; You et al.2017a, 2018). The SCO pairs201

are pixels from these two satellites, which are at most 5 km apart and 5 minute away; (2) Decom-202

pose the GMI TBs from these SCO pairs into Principal Components (PCs); (3) Use the SSMIS203

TBs in these SCO pairs to estimate the first several PCs by a linear regression model. This study204

selects the first four PCs, which accounts for over 90% of the total variance; (4) Apply the coeffi-205

cients derived from the SCO pairs to the whole SSMIS data. By doing so, we obtain the estimated206

PCs from SSMIS. These PCs are converted back to TBs at the GMI frequencies.207

The same procedure is applied to AMSR2, SSMIS (F16 and F17), ATMS and AMSU-A. The208

V37 GHz channel from F17 is not used since the data from April 2016 are not processed by the209

calibration team due to the large noise. The missing V37 channel on F17 SSMIS shows little210

influence on the TB conversion. On the other hand, both ATMS and AMSU-A only have the211

vertically polarized channels, and both radiometers do nothave channels around 19 GHz. Later212

analyses will show that the root-mean-square-error (RMSE)from the TB conversion based on213

ATMS and AMSU-A is noticeably larger than those from AMSR2 and SSMIS. However, section214

4 clearly demonstrates the improved rainfall retrieval performance by including these five sounders215

due to the increased sample size.216

In contrast to our previous studies (You et al. 2017a, 2018),this study applies the TB conversion217

procedure at each 2.5◦ grid box. By doing so, we show later that RMSE from this conversion is218

less than 3 K over almost all the areas from 60◦S to 60◦N. After this TB conversion process, GMI219

and other nine sensors all have channels of V19, H19, V24, V37, H37, V89 and H89.220
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c. Rainfall detection by linear discriminant analysis (LDA)221

The objective of this study is to use the emissivity under non-raining conditions to retrieve daily222

rainfall accumulation. To this end, we use the linear discriminant analysis (LDA) approach (Turk223

et al. 2014; You et al. 2015) to filter out the raining pixels. This method is first developed based224

on GMI and KuPR observations, then applied to converted TBs from other nine sensors.225

Suppose there exist two training databases from KuPR (i.e.,raining vs. non-raining databases),226

which contain multi-variablesx (i.e., V19,..., H89) in each database. According to Wilks (2011)227

the linear discriminant function to distinguish these two groups is:228

δ1 = aaaT ×x (1)

WhereT stands for the transpose.aaa is the discriminant vector, calculated in the following way:229

aaa = SSS−1
pool(x̄1− x̄2)

SSSpool =
n1−1

n1+n2−2
SSS1+

n2−1
n1+n2−2

SSS2 (2)

x̄i andSSSi (i = 1,2) represent the mean vector and covariance of each group, respectively.SSSpool230

is the weighted average of the two sample covariance matrices from these two datasets.n1 andn2231

are the samples size in these two groups, respectively.232

d. Emissivity computation233

We compute the emissivity values for each pixel at differentchannels based on Munchak et al.234

(2020), which is briefly summarized here. The emissivity vector is calculated from the converted235

brightness temperatures (i.e., other satellites’ observations are converted to the GMI channel set).236

This allows us to use the same atmospheric absorption and incidence angle assumptions that are237

used for GMI in Munchak et al. (2020). The emissivity and atmospheric temperature and water238
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vapor profile are retrieved using an optimal estimation inversion procedure. For the set of channels239

used in this study, however, there is little independent information about the atmospheric profile,240

and the retrieved emissivities are essentially those that reproduce the converted brightness temper-241

atures, given the space-time interpolated MERRA2 skin temperature and atmospheric profile.242

e. Emissivity temporal variation definition243

To derive emissivity temporal variation, it is necessary todetermine when the observations from244

different satellites are considered as observations for the same location. This study first divides the245

globe into a 0.5◦ grid box. We define any observation in the same 0.5◦ latitude-longitude grid box246

as observations at the same location. We choose the 0.5◦ grid box because the nominal resolution247

(59 km) is approximately 0.5◦ in the tropical region. Choosing a different grid size (e.g., 0.25◦ or248

1◦) does not affect the major conclusions of this work.249

The emissivity (e) temporal variation (∆e) is defined as:250

∆e = et0 −et−1 (3)251

∆t = t0− t−1 (4)252

Whereet0 is the current daily mean emissivity when rainfall occurs, and et−1 is the preceding253

daily mean emissivity at the same location without rainfall. The daily emissivity is computed as254

the arithmetic mean from the selected satellites (e.g., all-10-satellites or imagers-only, see section255

4e for details). A day is judged as raining day when there is atleast one raining observation on that256

day. No raining pixels are included in the daily mean emissivity average process.∆t is the time257

difference between these two days. From now on, the∆e at V19, H19, ..., V89 will be referred to258

as∆ev19, ∆eh19, ...,∆ev89 for convenience.259
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f. Bayesian retrieval method260

To retrieve the daily rainfall accumulation from∆e, we adopt the Bayesian retrieval technique261

as implemented by You et al. (2016). It is worth mentioning that the Bayesian retrieval concept262

is widely used in the precipitation/cloud retrieval community (e.g., Evans et al. 1995; Kummerow263

et al. 1996; Chiu and Petty 2006; Noh et al. 2006; Kim et al. 2008; Sano et al. 2013; Petty and Li264

2013a; You et al. 2015, 2016).265

Mathematically, the retrieval method can be stated as follows:266

f (x|yyy) =
f (yyy|x)× f (x)

f (yyy)

=
f (yyy|x)× f (x)

∫
f (yyy|x)× f (x)dx

(5)

wherex andyyy represent the daily rainfall amount and the emissivity temporal variation vector267

([∆ev19,∆eh19,∆ev24,∆ev37,∆eh37]), respectively. Later analyses will show that emissivity at 89268

GHz has very weak response to the previous rainfall, compared with the low frequencies. There-269

fore, in the rainfall retrieval process, we only include theemissivity at 19, 24 and 37 GHz and270

emissivity at 89 GHz is not used.f (x|yyy) is the posterior probability density function (PDF) ofx271

given theyyy, f (x) is the prior PDF ofx and f (yyy|x) is the likelihood function ofyyy given the precipi-272

tation ratex.273

The expected value ofx is taken as the final estimation for the daily rainfall amount, which is274

computed in the following way:275

E(x|yyy) =

∫
x× f (yyy|x)× f (x)dx
∫

f (yyy|x)× f (x)dx

=
E[x× f (yyy|x)]

E[ f (yyy|x)]
(6)

whereE stands for the expectation.276
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4. Results277

This section first shows the TB conversion and the rain/no-rain detection statistics. Then, we278

explain how to determine the rain-sensitive-region based on the emissivity depression correspond-279

ing to the different daily rainfall amount. We also explain why we would like to retrieve the daily280

rainfall amount, instead of multiple-day rainfall accumulation. Finally, we present the retrieval281

results from four different satellite constellation experiments and demonstrate why satellites with282

varying equator crossing times are necessary for the best retrieval performance.283

a. Brightness Temperature Conversion Statistics284

Figure 1 shows the sample size of the SCO pairs in each 2.5◦ grid box between GMI and other285

nine sensors over land. It is found that the sample size in thevast majority of boxes (>99%) for all286

satellites is greater than 200, which is sufficient to ensurethe conversion coefficients are stable.. In287

case there are not enough SCO pairs (<200) in some grid boxes, especially from MetOp-A (Fig.288

1f) and MetOp-B (Fig. 1g), we aggregate the SCO pairs in the nearest several grid boxes until the289

sample size is greater than 200.290

Figure 2 shows a conversion case study at H19, H37, and H89 at the grid box of (32.5◦N, 103◦W)291

between GMI and AMSR2 (Fig. 2a to Fig. 2c), between GMI and SSMIS-F18 (Fig. 2d to Fig. 2f),292

and between GMI and ATMS (Fig. 2g to Fig. 2h). The plots from SSMIS-F16 and SSMIS-F17 are293

similar to those from SSMIS-F18. The plots from four AMSU-A sensors are similar to those from294

ATMS. It is noticed that the estimated GMI TBs from these three satellites are very close to GMI295

observations. In fact, the correlation from all these channels are over 0.95, and the bias is close to296

0, which indicates that the conversion is working correctly. The RMSE (shown on the figure) is297

less than 3 K, except the estimated H19 from ATMS. As mentioned earlier, ATMS does not have298

frequency around 19 GHz. Also, only the vertically polarized channels are available from ATMS299
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(Table 1). These two ATMS features are responsible for the larger RMSE from ATMS. Similarly,300

RMSE from H19 estimated from AMSU-A is also noticeably larger than those from AMSR2 and301

SSMIS. Further, RMSE at H19 and H37 from AMSR2 is smaller thanthose from SSMIS, which302

is likely due to the finer footprint resolution from AMSR2, and the almost identical frequencies303

between GMI and AMSR2. At 89 GHz, RMSE from AMSR2 (Fig. 2c) andSSMIS-F18 (Fig. 2f)304

is comparable, likely due to the large impact of the hydrometeors in the atmosphere.305

The RMSE global distribution at H19, H37, and H89 is shown in Fig. 3 for AMSR2, SSMIS-306

F18, and ATMS. Our analysis shows that over 95% of the grid hasa RMSE less than 3 K, which307

corresponds to∼0.01 emissivity error. Consistent with the case study, RMSEfrom ATMS is the308

largest in almost all regions. RMSE at H19 and H37 GHz from AMSR2 is noticeably smaller than309

those from SSMIS (cf. Fig. 3a and Fig. 3d, cf. Fig. 3b and Fig. 3e). For H89 channel, RMSE310

from SSMIS and AMSR2 are of comparable magnitude. Analysis has also been conducted for all311

the vertically polarized channels (V19, V24, V37, and V89),yielding very similar results to those312

from the horizontally polarized channels.313

b. Rainfall Detection Statistics314

Similar to the TB conversion process, we refine our previously developed LDA rainfall detection315

method by applying it to each 2.5◦ grid box. To ensure the stability of the detection statistics, the316

number of raining pixels in each 2.5◦ grid box is required to be at least 500. When there are less317

than 500 raining pixels, we aggregate the observations in the nearest several 2.5◦ grid boxes until318

the sample size is greater than or equal to 500. At each grid box, a discriminant threshold value is319

selected to maximize the Heidke Skill Score (HSS).320

Figure 4 shows that the Probability of Detection (POD) and HSS are over 0.7 over the majority321

of the region, and the False Alarm Rate (FAR) is less than 0.05over most of the region. These322
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detection statistics are similar to those from the official National Aeronautics and Space Admin-323

istration (NASA) and the Japan Aerospace Exploration Agency (JAXA)’s precipitation detection324

algorithms (You et al. 2020).325

We would like to emphasize that in the daily rainfall estimation process, we first filter out the326

raining pixels judged by the LDA detection method. Therefore, the signal we use is essentially the327

soil emission variation due to the rainfall impact, not the hydrometeors’ effect in the air.328

c. Rainfall Sensitive Regions329

Previous studies (Brocca et al. 2014; McColl et al. 2017) showed that rainfall has little impact330

on the land surface soil moisture derived from microwave radiometer observations at 1.5 GHz over331

densely vegetated regions (e.g., Amazon, Central Africa, and Eastern United States). This study332

primarily exploits the soil moisture change due to the recent rainfall impact at the low frequency333

channels. Therefore, we would like first to select rainfall sensitive regions, by assessing the surface334

emissivity response to rainfall over different regions. This analysis is based on the emissivity335

derived from GMI only to reduce the computational time, instead of from all 10 satellites.336

Figure 5 shows the emissivity depression at H19 and H37 corresponding to different previous337

1-day rainfall accumulation. Specifically, we obtain the previous 1-day rainfall amount corre-338

sponding to each pixel from the half-hour IMERG Final-run product. Then, we compute the339

emissivity differences between wet (rainfall occurs in theprevious one day) and dry (no rainfall340

in the previous one day) conditions at the 0.5◦ resolution. For the wet condition, the previous341

1-day rainfall accumulation (indicated by R on the Fig. 5) isfurther grouped into four categories,342

including 0<R<5, 5<R<10, 10<R<20, and R>20 mm.343

As illustrated in Fig. 5, emissivity decreases over most of the land areas after rainfall events in344

the previous day, and the emissivity depression increases as the rainfall amount becomes larger.345
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The emissivity drop is particularly evident with rainfall accumulation greater than 20 mm over Sa-346

hel, Southern Africa, Middle East, Indian sub-continent, northwest China, Australia continent, and347

western United States (Fig. 5d and Fig. 5h). As expected, theemissivity depression magnitude348

is smaller at H37 than at H19 since 19 GHz is more sensitive to the surface properties (e.g., soil349

moisture). The emissivity depression at H89 (not shown) is even smaller than H37. Similar analy-350

sis has also been performed for the vertical polarized channels, from which the rainfall response is351

weaker than their horizontally polarized counterparts. These features (e.g., lower frequency with352

larger emissivity drop due to the rainfall impact) are well-known from previous studies (Jackson353

1993; Ferraro et al. 2013; You et al. 2014; Munchak et al. 2020). Based on these analyses, we only354

use the emissivity values at V19, H19, V24, V37 and H37 for thedaily rainfall retrieval and no355

emissivity values from 89 GHz are included in the retrieval process.356

This study attempts to exploit the emissivity depression signature due to the recent rainfall im-357

pact. For this purpose, we define regions with emissivity drop of at least 0.02 with previous 1-day358

rainfall accumulation greater than 20 mm as “rainfall-sensitive-regions” and retrieval is only per-359

formed over these regions.360

d. Correlation between emissivity and rainfall accumulation at different time scales361

It is desirable to understand how long the rainfall impact can last. To this end, we compute362

the correlation between emissivity under rain-free conditions and previous n-hour rainfall accu-363

mulation at the 0.5◦ resolution over the rainfall-sensitive-regions. Similarto the rainfall-sensitive364

analysis, this analysis also only uses the emissivity derived from GMI to reduce the computational365

time.366

We first attach the previous rainfall accumulations of 1-hr,3-hr, 6-hr, 12-hr and 24-hr to each367

emissivity pixel. Then, we compute the correlation betweenemissivity and these rainfall accumu-368
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lations at each 0.5◦ grid box. The purpose is to check when the correlation peaks.Fig. 6 shows that369

the correlation magnitude between emissivity and rainfallaccumulation increases quickly from 1-370

hr (Fig. 6a) to 12-hr (Fig. 6d) for H19, which is especially evident over Australia. While for the371

correlation from 12-hr (Fig. 6d) to 24-hr (Fig. 6e), such an increase is marginal. The H37 channel372

exhibits similar correlation temporal variations (Fig. 6fto Fig. 6j).373

To more clearly show this correlation variation, we plot thehistogram of the correlation be-374

tween emissivity and previous N-hr rainfall accumulation (N varies from 1 to 24-hr). The curves375

corresponding to 12-hr (black) and 24-hr (purple) are heavily overlapped (Fig. 7), demonstrating376

that the correlations between emissivity and 12-hr rainfall accumulation is very similar to the cor-377

relation between emissivity and 24-hr rainfall accumulation. This implies that previous rainfall378

being 13 to 24-hr away from that pixel has little impact to theemissivity value of that pixel. In379

other words, rainfall impact at H19 and H37 often persists about 12-hr. Therefore, this behavior380

supports our goal to estimate the daily rainfall accumulation. Of course, the rainfall impact can381

propagate into the next day, depending on at which hour the rainfall occurs. While 2-day or 3-day382

accumulations might be more accurate, most applications prefer daily accumulations.383

e. Rainfall retrieval result384

This section begins with a case study to explain in detail howthe retrieval algorithm is imple-385

mented. Then we test four retrieval experiments to show why using 10 satellites produces the most386

accurate retrieval result.387

Figure 8a shows the time series of emissivity at H19 over a selected grid box (32◦N-32.5◦N,388

99.5◦W-100◦W) in the Central Texas region. The LDA detection approach indicates that rainfall389

occurs on 23, 24, and 25 May 2014 (shown as red crosses). On 24 and 25 May 2014, these rainfall390

occurrences correspond very well with the “cold” TB at V89, shown in Fig. 8b. On 23 May 2014,391
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the TB depression at V89 is not as obvious as that on 24 and 25 May 2014. However, IMERG392

rainfall product indeed shows the daily rainfall amount at 1.2 mm on 23 May 2014.393

The daily rainfall retrieval algorithm takes the followingsteps: (1) filter out the raining pixels394

(indicated by the red crosses) from 23 May to 25 May 2014 because the computed emissivities395

for these pixels are affected by the hydrometeors in the atmosphere; (2) compute the daily mean396

emissivity using the non-raining values; (3) compute the daily mean emissivity on the preceding397

non-raining day (i.e., 22 May 2014, background emissivity); (4) obtain the emissivity difference398

between raining day (23, 24, and 25 May 2014) and background emissivity (22 May 2014). For399

demonstration purposes, Fig. 8a only shows the emissivity temporal variation at H19. In the400

retrieval process, we use the emissivity variation at 19, 24and 37 GHz (i.e.,∆eh19, ∆ev19, ∆ev24,401

∆ev37, ∆eh37). This ∆e computation procedure is applied at each 0.5◦ grid box over the rainfall-402

sensitive regions.403

Next, we design four experiments to demonstrate the advantages of using multiple satellites. In404

each experiment, we randomly select 80% data at each grid boxas the training dataset, while the405

retrieval is performed on the other 20% data. In the first experiment,∆e at each channel is calcu-406

lated by GMI observations only. The second experiment computes∆e using all five imagers (four407

sun-synchronous satellites shown in blue color in Fig. 9), including GMI, AMSR2, and three408

SSMISs. Clearly, the Equator Crossing Times (ECTs) from F17and F18 are, on average, only409

about 10 minutes apart, indicating that they observe the same location at nearly the same time of410

day. In the third experiments, we select six sensors, including GMI and five other radiometers on-411

board the sun-synchronous satellites (i.e., AMSR2 onboardGCOM, AMSU-A onboard NOAA19,412

SSMIS onboard F16 and F17, and AMSU-A onboard Metop-A). The selection of these five sun-413

synchronous sensors is based on the fact that ECTs from them are very different, as shown in Fig.414

9. By doing so, the emissivity temporal variation can be better captured. The fourth experiments415
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use observations from all 10 sensors to compute∆e. For convenience, these four experiments are416

referred as “GMI only”, “5-imagers”, “6-satellites”, and “all-10-satellites”.417

When only the GMI is used to compute∆e, the retrieval performance is rather poor, as indicated418

by the correlation being 0.25 and RMSE being 11.36 mm (Fig. 10a). It is immediately clear419

that the 5-imagers scheme produces much improved retrievalresults. Specifically, the correlation420

increases to 0.49 and RMSE decreases to 7.28 mm (Fig. 10b). Further analysis reveals several421

reasons responsible for this large retrieval improvement,which are all related to the observation422

sample size. First, the time difference (i.e.,∆t in Eq. 2, the time difference between the raining423

day and the non-raining day) is shorter when using five imagers than only using GMI, as shown424

in Fig. 11. The time difference is one-day for over 85% cases when using five imagers, which425

means that one can find a non-raining background in the preceding day when using five imagers426

for over 85% of the time. In contrast, only about 34% of the time one can find a non-raining427

background when only GMI observations are used. For the majority of the time, the non-raining428

background is two, three, or even more days away when only GMIis used. With the longer time429

difference, it is more likely that the emissivity varies dueto factors other than the rainfall impact,430

or the rainfall effect might be missed. Second, with more observations from five satellites, the431

diurnal cycle of the emissivity can be much better captured than that using GMI observations only.432

In fact, on average, the daily sample size over each 0.5◦ grid box is 10 when using 5 imagers,433

while it is only 1 or 2 from GMI. Lin and Minnis (2000) found that the emissivity of 19 GHz from434

Special Sensor Microwave Imager (SSM/I) at the early morning (06:40 local time) is about 0.06435

less than that at other times over a Southern Great Plains site , and they concluded that dew and436

surface rewetting effects may be responsible for the emissivity diurnal cycle. The large emissivity437

discrepancy between daytime and nighttime (up to 0.1 over some arid regions) has also been438

noticed by Norouzi et al. (2012) using AMSR-E observations,although they pointed out that the439
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different diurnal cycles between the skin temperature and the soil temperature are responsible for440

the large emissivity discrepancy. Regardless of the underlying mechanisms causing the emissivity441

diurnal cycle, more observations from multiple satellitescan better capture the daily emissivity442

variation compared with those from a single satellite. Third, the increased temporal sampling443

from multiple satellites provides a better chance of an observation right after the rainfall has ended,444

when its effect on emissivity is maximum.445

By carefully selecting six sensors with much different ECTs, the retrieval performance is further446

improved, indicated by the correlation being 0.58 and RMSE being 6.99 mm (Fig. 10c). The time447

difference between using five imagers and using six sensors is similar (Fig. 11). That is, over 85%448

of the time difference in both experiments is one day. However, with the much variable ECTs from449

the 6-satellites scheme, the emissivity variation can be better captured than that in the 5-imagers450

scheme. As mentioned previously, ECTs from F17 and F18 are very similar from 2014 to 2018451

(Fig. 9). By using observations from all-10-satellites scheme, the retrieval results only improve452

marginally with the correlation being 0.60 and RMSE being 6.52 mm, compared with that from453

the 6-satellites scheme. The marginal improvement is expected since ECTs from several satellite is454

similar (Fig. 9, Metop-A and MetopB, F17, F18 and NOAA18, AMSR2 and ATMS). This means455

that observations from these satellites with similar ECTs add little new information.456

A common feature in the retrieval result from Fig. 10b to Fig.10d is that for rain rates less than457

1 mm, the retrieval algorithm has little skill. This phenomenon may reflect the fact that the soil458

moisture has little response for daily rainfall accumulations less than 1 mm.459

5. Conclusions and Discussions460

This study presents a rainfall retrieval algorithm to estimate the daily rainfall accumulation from461

non-raining satellite observations from 10 satellites, including GMI, AMSR2, SSMIS onboard462
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F16, F17, and F18 satellites, ATMS onboard SNPP satellite, and AMSU-A onboard NOAA-18,463

NOAA-19, MetOp-A and MetOp-B satellites. In contrast to thetraditionally used ice-scattering464

signal over land, we use the land surface emissivity variation signature due to the rainfall impact for465

rainfall retrieval by filtering out the raining pixels. To compute the emissivity temporal variation,466

we first convert frequencies from other sensors to GMI frequencies from 19 (or 24) to 89 GHz.467

Results show that RMSE is less than 3 K over the vast majority of the regions for all nine sensors468

and for all channels, leading to about 0.01 emissivity uncertainty.469

The objective of this study is to use the non-raining pixels to compute the emissivity. To this470

end, we need to filter out the raining pixels first. Our statistical method shows strong capability to471

detect raining pixel, indicating by POD and HSS greater than0.70 over the majority of the region.472

The rainfall retrieval algorithm is only applied to the rainfall-sensitive-region, defined as the areas473

where the land surface emissivity drops at least 0.02 at H19 corresponding to the previous 1-day474

rainfall accumulation greater than 20 mm.475

While the best rainfall retrieval performance is achieved by using observations from all-10-476

satellites scheme, with the correlation and RMSE being 0.60and 6.52 mm, analysis shows that by477

selecting GMI and five sensors onboard the sun-synchronous satellites with much different ECTs478

(i.e., 6-satellites scheme), the retrieval performance iscomparable to that from 10 satellites, as479

indicated by the correlation of 0.58 and RMSE of 6.99 mm. In contrast, the retrieval results from480

the 5-imagers scheme are noticeably worse than those 6-satellites and all-10-satellites schemes481

because the emissivity variation can be much better captured by using all 10 satellites or six satel-482

lites with much different ECTs, compared with only using fiveimagers. Furthermore, there is483

low retrieval skill when only the GMI observations are used due to the much smaller sample size,484

which leads to a longer time difference between the raining day and the non-raining day. Also, it485

is not possible to capture the emissivity diurnal cycle withGMI observations only.486
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Future work seeks to further include the currently operational radiometers, including ATMS on-487

board NOAA-20, AMSU-A onboard Metop-C, WindSat, and FengYun-3 Microwave Radiometer488

Imager (MWRI). With more observations, the retrieval performance from our method is expected489

to be further improved. In particular, we expect a large retrieval performance improvement when490

the passive microwave radiometer observations around 8:00am and 11:00 am are available (see491

Fig. 9) in the future.492
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TABLE 1. Channels used for rainfall retrieval from each sensor (V-Vertical polarization, H-horizontal po-

larization). The sensors employed the cross-track scanning scheme is indicated by the superscript ”*”. Other

sensors use the conical scanning scheme. For the cross-track scanning sensors, the polarization (V/H) and the

mean footprint resolution are for the pixel at nadir.

650

651

652

653

Satellite Name Sensor Name Freq (GHz) Freq (GHz) Freq (GHz) Freq (GHz)

GPM GMI 18.7 (V/H, 15 km) 23.8 (V, 13 km) 36.6 (V/H, 12 km) 89.0 (V/H, 7 km)

GCOM AMSR2 18.7 (V/H, 22 km) 23.8 (V/H, 26 km) 36.5 (V/H, 12 km) 89.0 (V/H, 5 km)

F16 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

F17 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

F18 SSMIS 19.4 (V/H, 59 km) 21.3 (V, 59 km) 37.0 (V/H, 36 km) 85.5 (V/H, 14 km)

NPP ATMS∗ 23.8 (V, 75 km) 31.4 (V, 75 km) 88.2 (V, 32 km)

NOAA-18 AMSU-A∗ 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

NOAA-19 AMSU-A∗ 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

MetOp-A AMSU-A∗ 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)

MetOp-B AMSU-A∗ 23.8 (V, 48 km) 31.4 (V, 48 km) 89.0 (V, 16 km)
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(a) AMSR2-GCOM meets KuPR, sample size in 2.5o grid box
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(b) SSMIS-F16 meets KuPR, sample size in 2.5o grid box 
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(c) SSMIS-F17 meets KuPR, sample size in 2.5o grid box
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(d) SSMIS-F18 meets KuPR, sample size in 2.5o grid box 
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(e) ATMS-NPP meets KuPR, sample size in 2.5o grid box
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(f) MHS-MetOpA meets KuPR, sample size in 2.5o grid box 
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(g) MHS-MetOpB meets KuPR, sample size in 2.5o grid box 
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(h) MHS-NOAA18 meets KuPR, sample size in 2.5o grid box 
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(j) MHS-NOAA19 meets KuPR, sample size in 2.5o grid box 

FIG. 1. Coincident observation number in each 2.5◦ grid box between GMI and other 9 sensors, including

AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18, ATMS-SNPP, AMUSA-MetOpA, AMSUA-MetOpB, AMSUA

-NOAA18, and AMSUA -NOAA19. The number is scaled by 100 in each plot. All data are from March 2014

(launch of the GPM satellite) to December 2018.
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FIG. 2. First column: scatter plots between GMI TBs and estimated TBs from AMSR2 at (a) H19 , (b) H37,

and (c) H89, using the simultaneous conical overpass pairs between GMI and AMSR2 over the grid box of

(32◦N, 103◦W) from March 2014 (launch of the GPM satellite) to December 2018. Second column: same as

the first column except between GMI and SSMIS-F18. Third column: same as the first column except between

GMI and ATMS-SNPP.
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(a) RMSE for H19 based on AMSR2 in each 2.5o grid box
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(b) RMSE for H37 based on AMSR2 in each 2.5o grid box
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(c) RMSE for H89 based on AMSR2 in each 2.5o grid box
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(d) RMSE for H19 based on SSMIS-F18 in each 2.5o grid box
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(e) RMSE for H37 based on SSMIS-F18 in each 2.5o grid box
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(f) RMSE for H89 based on SSMIS-F18 in each 2.5o grid box
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(g) RMSE for H19 based on ATMS in each 2.5o grid box
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(h) RMSE for H37 based on ATMS in each 2.5o grid box
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(k) RMSE for H89 based on ATMS in each 2.5o grid box

FIG. 3. First column: the root-mean-square-error (RMSE) in each 2.5◦ grid box between GMI and AMSR2 at

(a) H19, (b) H37, and (c) H89. Second column: same as the first column except between GMI and SSMIS-F18.

Third column: same as the first column except between GMI and ATMS-SNPP. All data are from March 2014

(launch of the GPM satellite) to December 2018.
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(a) POD
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(b) FAR
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(c) HSS

FIG. 4. (a) the Probability of Detection (POD) at each 2.5◦ grid box, derived from GMI and KuPR observa-

tions from March 2014 (launch of the GPM satellite) to December 2018 at the nominal resolution of 59 km. (b)

Same as (a) except for False Alarm Rate (FAR). (c) Same as (a) except for Heidke Skill Score (HSS).

721

722

723

39



  

180 120W 60W 0 60E 120E 180

60S

40S

20S

0

20N

40N

60N

-0.05
-0.04
-0.03
-0.02
-0.01
0
0.01

 (a) H19, 0<R<5
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 (b) H19, 5<R<10
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 (c) H19, 10<R<20
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 (d) H19, R>20
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 (e) H37, 0<R<5

  

180 120W 60W 0 60E 120E 180

60S

40S

20S

0

20N

40N

60N

-0.05
-0.04
-0.03
-0.02
-0.01
0
0.01

 (f) H37, 5<R<10
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 (g) H37, 10<R<20
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 (h) H37, R>20

FIG. 5. First column: emissivity at H19, wet (rainfall occurs inprevious one day) minus dry (no rainfall in

previous one day) conditions. The rainfall accumulation (R) in previous 1-day is separated into four categories

(0<R<5, 5≤R<10, 10≤R<20, and R≥20), which is computed from the half-hour IMERG final run (version

06A) product. Second column: same as the first column except for H37.
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(a) Corr. between eh19 and previous 1-hr rain amount (mm)
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(b) Corr. between eh19 and previous 3-hr rain amount (mm)
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(c) Corr. between eh19 and previous 6-hr rain amount (mm)
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(d) Corr. between eh19 and previous 12-hr rain amount (mm)
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(e) Corr. between eh37 and previous 24-hr rain amount (mm)
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(f) Corr. between eh37 and previous 1-hr rain amount (mm)

  

180 120W 60W 0 60E 120E 180

60S

40S

20S

0

20N

40N

60N

-0.5

-0.4

-0.3

-0.2

-0.1

 

(g) Corr. between eh37 and previous 3-hr rain amount (mm)
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(h) Corr. between eh37 and previous 6-hr rain amount (mm)
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(i) Corr. between eh37 and previous 12-hr rain amount (mm)
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(j) Corr. between eh37 and previous 24-hr rain amount (mm)

FIG. 6. First column: correlation between emissivity at h19 (eh19) and the previous N-hour rainfall accumu-

lation. N stands for 1, 3, 6, 12, and 24, corresponding to the figures from (a) to (e). Second column: same as the

first column except for emissivity at h37 (eh37). Rainfall accumulation is computed from the half-hour IMERG

final run (version 06A) product.
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FIG. 7. Histogram of correlation coefficients between emissivity at h19 (eh19) and the previous N-hour

rainfall accumulation. N stands for 1, 3, 6, 12, and 24. For comparison, all histograms are vertically scaled

to unity by their maximum histogram frequency counts. Rainfall accumulation is computed from the half-hour

IMERG final run (version 06A) product.
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FIG. 8. (a) Time series of emisivity at H19 (eh19) from 21 May 2014to 26 May 2014 at the grid box (100◦W,

32◦N). The “blue” circle indicates the satellite observations, and the “red” cross indicates the raining pixels

judeged by the LDA method, which are discarded in the retrieval process. (b) Same as (a) except for V89. (c)

Daily IMERG rainfall accumulation from 21 May 2014 to 26 May 2014 at the grid box (100◦W, 32◦N).
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FIG. 9. Equator crossing time (local time in the morning) for nine sun-synchronous satellites. Satellites with

imagers onboard are in blue (i.e., AMSR2 onboard GCOM, SSMISonboard F16, F17, and F18), and satellites

with sounders onboard are in red (i.e., ATMS onboard SNPP, AMSU-A onboard NOAA-18, NOAA-19, MetOp-

A, MetOp-B). The GPM satellite has a precessing orbit, whichmeans that it overpasses a certain location at

varying times throughout the day.
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(a) GMI−only

Corr=0.25

RMSE=11.36 mm
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(b) 5−imagers

Corr=0.49

RMSE=7.28 mm
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(c) 6−satellites

Corr=0.58

RMSE=6.99 mm
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(d) All−10−satellites

Corr=0.60

RMSE=6.52 mm
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FIG. 10. (a) Density scatter plot between IMERG daily rainfall amount and retrieved daily rainfall amount

based on the emissivity temporal variation (∆e) at 19, 24 and 37 GHz, derived from GMI observations only.

(b) Same as (a) except that the∆e is derived from five imagers, including GMI, AMSR2, and threeSSMIS. (c)

Same as (a) except the∆e is derived from six sensors, including GMI and five other radiometers onboard the

sun-synchronous satellites (i.e., AMSR2 onboard GCOM, AMSU-A onboard NOAA19, SSMIS onboard F16

and F17, and AMSU-A onboard Metop-A). These five sensors havevery different equator crossing time, as

shown in Fig. 9. (d) save as (a) except that the∆e is derived from all 10 satellites.
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FIG. 11. The time difference between raining day and non-raining day (background), as defined in Eq. 2, for

all four retrieval experiments shown in Fig. 10.
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