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Background

Original idea from Ziad Haddad, then Yalei You did early work on this, while
he was a summer intern at JPL.

Previous work have demonstrated a Bayesian-based precipitation retrieval
framework based on an a-priori dataset formed by the principal components
of the emissivity vector and the environmental state (surface temp, 2-m air
temp, column water vapor). “emissivity principal components” or EPC.

Using a large set of DPR and DPRGMI (CORRA) data for each radiometer
type (GMI, ATMS, etc), transformation coefficients are derived that allow the
EPC vector to be calculated from the observed TB.

The EPC is also used to index and guide the a-priori database searches, to
iIsolate candidates that are most congruent to the observations.
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How to Think Like an Epidemiologist

Don’t worry, a little Bayesian analysis won't hurt you.

New York Times
Aug 4 2020

https://www.nytimes.com/2020/
08/04/science/coronavirus-
bayes-statistics-math.html
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There is a statistician’s rejoinder — sometimes offered as wry
criticism, sometimes as honest advice — that could hardly be a
better motto for our times: “Update your priors!”

In stats lingo, “priors” are your prior knowledge and beliefs,
inevitably fuzzy and uncertain, before seeing evidence. Evidence
prompts an updating; and then more evidence prompts further
updating, so forth and so on. This iterative process hones greater
certainty and generates a coherent accumulation of knowledge.
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TELSEM Surface Classes Used in GPROF Database index and search

1 Ocean / Large inland Water

2 Sea Ice

3—7 Decreasing Vegetation Covered
(3=Amazon, 7= Sahara Desert)

8 —11  Decreasing Snow Covered
(8=Antarctica, 11= lightly snow covered)

12 Inland Water / Rivers/ Estuaries
13 Coastlines (land/ocean boundary)
14 Ocean / Sea-ice Boundary

Daily land snow gets assigned 10.
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This methodology was
expanded to all surfaces
(wherever GMI observed)
after about 4 yrs of GPM
data was collected.

A principal component
analysis uses the large
collection of DPR cloud-
free observations to
compute the coefficients
that transfer the TB
observations to EPC
space (blue boxes).

The a-priori database is
indexed by the first three
EPC elements.
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GCOM-W1 AMSR-2 Example
1C.GCOMW1.AMSR2
l EPC(DB TB)
o= Bayesian Ku, Ka Z profiles
Apply — : minimization DPR, CORRA q prOflleS
EPC= f(TB) MERRAZ2, date/location
S EPC(TB)
‘ Required DB index files T

The solver in the EPC retrieval is similar (nearly identical) to the facility
GPROF algorithm, except that the observations and database entries are
weighted in EPC space.

The surface precipitation(s) and the DPR and CORRA vertical Ku/Ka-band
structure is estimated at the same time.

The EPC writes out netCDF4 files which are formatted nearly identical to
GPROF files (runs on my Macbook with just a C++ compiler and python3).

EPC writes out many types of diagnostics some of which | will show next.



EPC2

a-priori Database (DB) binned by EPC

A-Priori DB, indexed by EPC, was developed from DPR &
each of the constellation of radiometer matching scenes.

[ = Surface precipitation rate  [inlzla{e]Y Bl

= Condensed water content profile

3 = Storm top height
= Precipitation type

) .... etc.
vk

<
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EPC1

EPC is calculated from TB at each observation time.

EPC = f(TB) <« Predefined regression function relating
TB combinations to each EPC

The 3-D "cube” is built and indexed in a 1-D fashion.




Binning the a-Priori Database (DB)

R 29 binS, covering the expected range of EPC1 ................... >

Sttt vttt vttt 25 26 27 28

A A A A
T In between, bins 2-26 hold the DB entries T
8%

in 4% increments of the CDF of EPC1 92%

4% 12% 88% 96%

Same procedure for

Bins 0 and 1 hold the DB EPC2 and EPC3 Bin 27 and 28 hold the DB

entries when the CDF of entries when the CDF of
EPC1 reaches the 0.001% EPC1 reaches the 99.9%

and 0.1% level and 99.999% level

Example: For a given TB, its EPC1, EPC2 and EPCa3 fall into bins 10, 8, and 25.

DB index= (29)2 EPC, + (29)! EPC, + (29)° EPC

=(29)210 + (29)' 8 + (29)° 25 = 8667 This is important

for two reasons

. 3.
The DB index ranges from 0 to (29)3-1 (next slide)

(0 to 24389)



Binning the a-Priori Database

The database is sparsely populated in some of the 3-D areas.

Example: An observed TB falls in DB index 10000, but there are only 20
entries (insufficient). The database search can be expanded outward
(9999, 10001, 9998, 10002, etc.) until a sufficient number of DB entries are
reached.

Since this changes the smaller EPC3 bin (EPC2 if needed), the database
expansion search moves slowly and smoothly through the joint variability in
surface emissivity and environmental conditions.

The extreme cold 89 GHz TB (corresponding to the extreme
precipitation observations) tend to cluster in the first (0, 1) or
last (27, 28) EPC bins.

Using logarithmic bin spacing at the end bins isolates the extreme
precipitation events. When the EPC computed from an observed TB falls in
one of these bins, it gets associated with more extreme precipitation (ie,
fewer non-extreme events are included in the Bayesian weighting).



Example Only DB entries whose
Database file 03208 (EPC1 is small) Mot s February-

Haven't finished this yet!
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Mixture of what TELSEM says these pixels were (TELSEM is a classification-
may or may not be what the surface looks like at observation time)

Database has mixture of raining and non-raining; the Bayesian search is blind
to this



Number in Database

Example Only DB entries whose
Database file 19208 (EPC1 is larger =~ Month s February-
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GPM Overpass
8 June 2018 0043 UTC
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GPM Overpass 8 June 2018 0043 UTC
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Geographical locations of top ranked a-priori
dataset candidates
(GMI pixel nearest 36N 100W)
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Summary

Only two examples were shown, from the favored central US location,
where vegetation increases (decreases) eastward (westward) of 100W
longitude, under non-raining conditions.

Did not have time to go into more details of precipitation characteristics,
including vertical water content structure, over various surface types
(Utsumi et. al. 2020 paper in review).

In future Part 2, | will show examples and precipitation profiles over other
surface conditions, e.g., all water, mixed water/land, snow of different
characteristics, etc.



