

Soil Moisture – Precipitation Interactions in the Central U.S. using Thunderstorm Observation by Radar (ThOR)

TRENT FORD

STEVEN QUIRING

ILLINOIS STATE CLIMATOLOGIST ILLINOIS STATE WATER SURVEY UNIVERSITY OF ILLINOIS PROFESSOR DEPARTMENT OF GEOGRAPHY THE OHIO STATE UNIVERSITY

KEVIN GRADY

RESEARCHER ILLINOIS STATE WATER SURVEY UNIVERSITY OF ILLINOIS

Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

Soil Moisture – Precipitation Coupling

Coupling and feedbacks important processes for regional hydroclimate

Γ

PMM LAND SURFACE WORKING GROUP

- 1. Difficulty of establishing causality
 - a) Accounting for precipitation persistence and large-scale forcing

Persistence Potential Feedback Synoptic

PMM LAND SURFACE WORKING GROUP

2. Dataset dependency

a) Multiple soil moisture datasets – SMERGE, ESA-CCI, National Soil Moisture Network, etc.

Ford *et al.* (2018), J. Hydrometeorol.

- 3. Precipitation vs. convection initiation
 - a) Thunderstorm Observation by Radar (ThOR, Houston *et al.* 2015) roughly 200,000 initiation points between 2005 and 2017

2007 Ford *et al.* (2018), *J. Hydrometeorol.*

4. Spatial Scale

- a) Dry soil preference diminishes as soil moisture and initiation is aggregated to courser scales
- b) Slight wet (root zone) soil preference at 250 km scale
- c) Test sensitivity of results to scale

Yuan et al. (2020), Clim. Dyn.

Project Objectives

- Evaluate climatological preferences for soil moisture conditions underlying convection initiation in the central U.S.
- Confront statistics with process-based coupling and feedback metrics and land surface, boundary layer observations
- Evaluate response of convection initiation to land surface conditions using WRF with LES mode

Results – Statistical Preferences

Top Maps:

- Climatological preference for initiation over drier than normal soils across MO River Basin
- Preference for initiation over wetter soils in southern Rockies, south-central Texas

Bottom Maps:

• No climatological difference in soil moisture between point of initiation and surrounding areas

Results – Statistical Preferences

SMERGE

Soil Moisture Heterogeneity

- Surface layer (ESA-CCI) more • heterogeneous than 0 - 40 cm layer (SMERGE)
- Areas of highest heterogeneity co-• located with dry and wet preferences

Summary

Past

- Complexities when detecting soil moisture precipitation feedbacks (using obs)
 Present
- Using multiple (*in situ*, satellite, model) soil moisture datasets
- Using hundreds of thousands of convection initiation points from ThOR
- Climatological preferences for soil moisture conditions, anomalies + heterogeneity

Future

- Process-based understanding of boundary layer conditions, modification associated with soil moisture and land surface feedback
- Confronting statistical analysis with numerical modeling

twford@illinois.edu | stateclimatologist.web.illinois.edu | y@ILClimatologist

