Snow, ice, and sea ice
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The microwave surface emission / scattering contribution

to the satellite observations over polar regions

Under clear ski conditions:
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Necessity to have microwave emissivity estimation:

* over the large frequency range covered by current and future missions

e consistent across frequencies, especially for the developments of multi-
frequency sea ice and snow retrieval (e.g., from CIMR)

* including error covariance estimates

 able to handle the large temporal and spatial variability of the polar
environment

e fast and practical



The different possibilities

* Radiative transfer modeling
 Direct calculation from satellite observation
e Parameterization of satellite-derived estimation



Radiative transfer modeling

Different models developed for snow and ice (HUT, MEMLS, SMRT, DMRT, SMRT...)
Rather large complexity, depending on the models, and requiring many input parameters

SMRT (Picard et al.,, GMD, 2018)

See https://www.smrt-model.science/documentation.html Comparison of the different model principals
: (Lowe and Picard, TC, 2015, Pan et al., TGRS, 2016)
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* Applicable to multiple frequencies, polarizations, and angles?
* Availability of the input parameters?
* Applicable at global scale under a large diversity of conditions?




Radiative transfer modeling

Example: A recent effort to evaluate a model at
large scale by Burgard et al., TC, 2020.

based on the MEMLS model

In summer, the MEMLS model not applicable and
use of the Round Robin Data Package (RRDP)

At 6.GHz, V pol, 53°, for winter
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Radiative transfer modeling

Example: A recent effort to evaluate a model at
large scale by Burgard et al., TC, 2020.

based on the MEMLS model

In summer, the MEMLS model not applicable and
use of the Round Robin Data Package (RRDP)

At 6.GHz, V pol, 53°, for winter

What about H polarization?
What about the other AMSR frequnecies?
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Satellite-derived microwave emissivity datasets
The basis:
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First applied globaly to SSM/I observations
Prigent et al., JGR, 1997; BAMS, 20086...
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Often used since for other instruments
AMSU (Prigent et al., 2004; Karbou et al., 2005...), AMSR (Moncet et al. , 2011; Norouzi et al., 2015...)

Or imbedded in surface-atmosphere retrievals
SSMI (Aires et al., JGR, 2001), multiple-instruments (Boukabara et al., RS, 2018), GMI (Munchack et al., IEEE TGRS, 2020)



Satellite-derived microwave emissivity datasets

Derived from SSM/I (Paris Observatory)
(Cordisco et al., JGR, 2005)
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Satellite-derived microwave emissivity datasets

For instance derived from the Microwave Integrated Retrieval System (MIRS) at NOAA

(Boukabara et al., RS, 2018)

MiRS 1DVAR, Vertical Integration, and Post-Processing Products

TP
Rwe
4WF

CLW

’ -5ea Ice Concentration
-Sea ice Age

~Snow Water Equivalent

-Snow Pack Properties

~Soil Moisture

~“Wind

-Rain Raw

-Snaw Fall Rate

Lhoua Thickness

Clowd phase

Figure 1. Products from the Microwave Integrated Retrieval System (MiRS) two-steps retrieval process.
Products listed in bold under “Derived Products”™ are generated from the emissivity spectrum. Soil
moisture and wind speed/vector are not current operational products. 1DVAR: one-dimensional,
variational-based physical approach.
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Satellite-derived microwave emissivity datasets

Derived from the GPM Microwave Imager (GMI), along with the o, from the GPM DPR
(Munchack et al., IEEE TGRS, 2020)
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Systematique calculation of the surface emissivity at GMI frequencies

between 10 and 166 GHz, using optimal estimation method
(simultaneous retrieval of atmosphere and surface parameters).
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Satellite-derived microwave emissivity datasets
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Sources of potential errors:

The surface temperature T,
e Tsurf=Tskin? Tskin from NWP model, from IR (under clear sky conditions) ?

* Sub-surface contribution? Tsurf=Teff

The atmospheric contribution
* especially at high frequency
* depends on atmospheric profiles and atmospheric absorption model
» adjusted when calculation within a full surface / atmosphere inversion model (as in MIRS or in Aires et al., 2001)

Specular approximation
* always valid? Lambertian contribution close to nadir and at high frequency? Especially over snow and ice?

(Matzler, GRSL, 2005; Karbou et al., GRSL, 2005; Harlow, TGRS, 2009)



Satellite-derived microwave emissivity datasets

From one satellite, observations of a limited range of frequency, angle, polarization
How to derive general emissivity parameterization from satellite-derived emissivities?

= An analysis of emissivities derived from multiple satellites, to parameterize the emissivity frequency,
angle, and polarization dependence

Satellite-derived
emissivity data base
TELSEM? {%w:ﬂs 12‘3,";‘;5’.‘..31"}
Tool to Estimate Land Surface
Emissivities in the Microwaves and Millimeter waves "23323‘325“

(Prigent et al., IEEE TGRS, 2008; Aires et al., QJRMS, 2011;
Wang et al.,JAOT, 2017) et
angular dependence

SSM/I-derived
emissivity climatology
Parameterization of the (0.25°, monthly-mean)

frequency dependence
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Differences in the assumptions for the emissivity calculation for the diverse instruments (Tsurf, atmospheric profiles
or atmospheric absorption model) or satellite inter-calibration issues can lead to inconsistencies / difficulties.



Satellite-derived microwave emissivity datasets

Obs Paris SSM/I 85GHz H . Obs Paris SSM/1 85GHz H

TELSEM? over the poles (Wang et al., JAOT, 2017)

. Merging of several emissivity estimates from different
instruments and institutes
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Satellite-derived microwave emissivity datasets

TELSEM? for CONTINENTAL SNOW AND ICE (Wang et al., JAOT, 2017)
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Satellite-derived microwave emissivity datasets

TELSEM? for SEA ICE (Wang et al., JAOT, 2017)
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Comparison between modeled and satellite-derived emissivities

Snow modeled emissivity (CMEM) and satellite-derived emissivity (TELSEM?) at ECMWF

compared to AMSR observations from 6.9 to 90 GHz
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Satellite-derived microwave emissivity

TELSEM?
Tool to Estimate Land Surface Emissivities at Microwaves and Millimeter waves
(distributed with RTTOV and CRTM)

« It provides global realistic estimates of the emissivity for all continental and sea-ice surfaces, from 18 to
700 GHz, monthly mean, at 25 km resolution.

* Inputs: lat, lon, month, frequency, and incidence angle.
* Outputs: emissivities in V and H polarizations, along with error correlations.

» Itis anchored to the SSMI-derived microwave emissivities
« It benefits from satellite-derived emissivities calculated in different institutes
* Realistic FIRST GUESS estimates, along with error covariances
To be updated with new emissivity estimates, especially below 18 GHz (AMSR + SMAP + SMOS)

For a better consistency in NWP applications, use of the NWP framework of interest for the emissivity estimations
(Tsurf, atmospheric profiles and radiative transfer model...), for all the instruments.



Satellite-derived microwave emissivity

On the same principal, developing a parameterization of the sea ice emissivities based on the

ESA Sea Ice Round Robin Data Package (Pedersen and Saldo, 2016) at
SMOS/SMAP and AMSR frequencies and observing conditions.

First systematic estimation of the
emissivities, directly from the RRDP
information.

Emissivity parameterized as function
of the the 2-meter air temperature,
the ice age (first year or multi-year),
and the snow depth.

Reasonable comparisons with
AMSR?2 observations, for both poles
and seasons, and for all frequencies
and polarizations.

Jimenez et al., under review JGR, 2021
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Satellite-derived microwave emissivity

2017/03/04 Simulations - Observations

From ESA Sea Ice Round
Robin Data Package

* First systematic estimation of the
emissivities, directly from the RRDP
information.

* Emissivity parameterized as function
of the the 2-meter air temperature,
the ice age (first year or multi-year),
and the snow depth.

* Reasonable comparisons with
AMSR?2 observations, for both poles
and seasons, and for all frequencies
and polarizations.

V-pol H-pol V-pol H-pol

Jimenez et al., submitted JGR, 2021



Satellite-derived microwave emissivity
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Satellite-derived microwave emissivity
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Interpretation of the signatures, in terms of geophysical parameters Soriot et al., IGARSS, 2021



Satellite-derived microwave emissivity
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Satellite-derived microwave emissivity
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Soriot et al., IGARSS, 2021
Can we reproduce it with radiative transfer modeling to better understand the key parameters that drive these variabilities?



Satellite-derived microwave emissivity

Simulation of the scattering signals with SMRT (Snow? Depth
hoar ? Surface roughness? Multi-year ice / First-year ice?)
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Can we reproduce it with radiative transfer modeling to better understand the key parameters that drive these variabilities?
Soriot et al., IGARSS, 2021



Conclusion

> Accurate quantification of snow, ice, sea ice microwave emissivity required, for sounders and
imagers.

> It has to be consistent:
» For a large range of frequencies (1 to ~ 300 GHz?!)
« For multiple angles and both orthogonal polarizations
» At continental scale
* QOver the full annual cycle

> Radiative transfer models still very challenging for large scale applications, under multiple instrument
conditions and diverse environements.

> Satellite-derived emissivity estimates and associated parameterization can provide reasonable first
guess estimates with realistic multi-frequency co-variabilities, spatial patterns and temporal
behaviors. Error covariances can be calculated.

> Interest of radiative transfer models to understand the general behavior and help the selection of
the key parameters for emissivity parameterization. These radiative transfer models have to be flexible
enough to cover a large frequency range, dual polarization, and angle dependence.



Conclusion

Physics-aware statistical parameterization of the snow, ice, sea ice emission / scattering?

1)

Estimation of the satellite-derived emissivities from multiple satellites (large range of frequencies
and incidence angle, dual polarizations). For NWP applications, use of the NWP framework of

interest for the multiple satellite emissivity estimations, for a better consistency.

Understanding the key geophysical parameters that drive the emissivity variabilities and co-
variabilities (consistently at multiple frequencies and observing conditions), with the help of the
physics (possibly with radiative transfer modeling) and of statistical analyses.

Based on this physical understanding of the variability, parameterization of the emissivities as a

function of observing conditions (frequency, incidence angle, polarization) and geophysical
information (location, time of the year, ice and snow properties), using statistical methods.



