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Challenges in the passive microwave snowfall retrievals

Snowfall scattering is much weaker than rainfall and
depends on complex microphysics of snowflakes.
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Snow Cover & Snowfall Interactions
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Key Questions:

How does the snow-cover scattering affect GMI
brightness temperatures?

To what extent the liquid water content of snowy clouds
can mask the snowfall signals?

At which boundary conditions can the snow cover
obscure the snowfall signatures?

Are there any land-atmospheric blind spots for GPM
microwave snowfall retrievals?




Datasets
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Table 1. Abbreviations, data, and products.

Variable Symbol Unit Source 0 BAL PR cioT - ox NEASURE
89 GHz brightness temperature Thbgg K 1C-R GMI V05 satellite observation product
166 GHz brightness temperature Tbigs K 1C-R GMI V05 satellite observation product
183 + 3 GHz brightness temperature Tb1g3:3 K 1C-R GMI V05 satellite observation product
183 £ 7 GHz brightness temperature Tb1gs7 K 1C-R GMI V05 satellite observation product
Snowfall rate sr mm h—?! 2ADPR-V06 satellite observation product
Total precipitable water vertically integrated on 0-20 km TPW kg m 2 2ADPR-V06 satellite observation product
Skin temperature Tskin K MERRA-2 reanalysis
2-m temperature Tom K MERRA-2 reanalysis
Snow cover extent IMS Dimensionless United States National lce Center
Snow water equivalent on the ground SWE kg m 2 MERRA-2 reanalysis
Cloud liquid water path LWP g m? MERRA-2 reanalysis
Ice water path WP g m~2 MERRA-2 reanalysis
Water vapor path WVP g m? MERRA-2 reanalysis
Air temperature averaged on 0-20 km Tair K GANAL analysis
Clear sky land emissivity £ dimensionless £y = Tbs

Tskin
Cloud liquid water emissivity Elwp dimensionless Elwp = Tmbs;—gsTSkin

air

Total atmaspheric emissivity Ea dimensionless €a = Esr ¥ Elwp




Spatial and Marginal Distributions of SWE & Average Surface Temperature (Ts)
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e SWEs 0-40 kgm~2 are for early wintertime fresh
snow over Himalayas.

* SWEs 40-100 kgm~2 are largely from Siberian
plateau and northern Canada with extremely

colder surface temperature.

* SWEs >100 kgm2 are for late winter and early
spring with warmer surface temperature.




Multi-year average of Cloud LWP & Atmospheric Temperature (Ta)
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= The temperature increases as LWP values increase,
which makes the observed anomaly less
pronounced.

* Cloud LWP PDF changes its shape in response to
snowfall occurrence and its rate: The mean LWP
increases from 40 gm=2to 150 gm™2.




Snow Cover, LWP, & Snowfall Radiometric Interactions
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Snow-Cover Emissivity -- Clear Sky
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Precipitation and cloud liquid water are close to zero.

Exponential function can explain well the emissivity values as a
function of SWE at GMI frequencies.

As the SWE increases, the emissivity of 166 GHz channels is
decreasing with a lower rate compared to the emissivity of 89
GHz.

89 GHz reaches a plateau at SWE = 100 kgm ™%, while 166 GHz
continues to respond to changes with SWE.




Atmospheric Emissivity -- Cloud LWP

* The rate of emissivity increase due to the increase of the liquid water path is higher at channel 89
GHz than that of channel 166 GHz.
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Atmospheric Emissivity -- Snowfall and Cloud LWP

Atmospheric emissivity of the cloud LWP Atmospheric emissivity of the LWP and snowfall
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Findings

e The channel 166 GHz could better capture the scattering signature of light snowfall events
because it responds less strongly to the increase of the cloud LWP than the 89 GHz channel.

e Larger snowfall events could be captured better at 89 GHz when both LWP and SWE are small,
while 166 GHz becomes more advantageous at capturing this scattering when LWP increases
up to about 100-150 g m~—2.

e Over deeper snow-cover regions (SWE > 200 kg m=2) and larger LWP values (=100-150 gm~2),
the scattering of snowfall, even with large intensity, is masked by the comparable scattering
contribution from the large accumulation of snow cover and the emission from liquid water at
both 89 and 166 GHz channels: the snowfall dominant signature becomes its emission that can
be distinguished from the very low plateaued emissivity of the surface at channel 89 GHz.

e Over latitudes above 60°N with SWE > 200 kg m=2 and LWP < 100-150 g m~2, the snowfall
microwave signal could not be detected with GPM without considering a priori data about SWE
and LWP. Our findings provide quantitative insights for improving retrieval of snowfall in
particular over snow-covered terrain.
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Limitations

* At the daily or sub-daily time scales, large variability around these multi-year averages
is expected.

* Forinstantaneous precipitation retrievals, one should consider the use of the dynamic
surface emissivity database developed by Munchak et al., 2020.

 We acknowledge potential errors and inaccuracies in DPR measurements regarding
light precipitation intensities. An additional investigation, if it does not require high
space-time coverage, should consider measurements from CloudSat Cloud Profiling
Radar (CPR, Turk et al., 2021).

 We only used total precipitable water to screen the clear-sky Tbs. This can add some
uncertainties regarding the calculated emissivities of LWP and snowfall. Future
research needs to investigate the effects of total precipitable water on the radiometric
signal during the snowfall events (Milani et al., 2021).
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