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The responses of land surface microwave properties to precipitation, including the brightness temperature
(Tbs) and emissivities (MLSEs) at 18.7, 23.8 and 37.0 GHz, are studied by combining satellite synergetic re-
trievals (from AQUA AMSR-E and MODIS) with in-situ measured land surface temperature, soil moisture
(SM), and precipitation at two Amazonia tropical rainforest sites Km83 and Km67. In general, Tbs and
MLSEs are found to be negatively correlated to SM. Their dependences on the vegetation water content
(VWC) are not monotonic: positive correlations at relatively low VWC and negative correlations at high
VWC range. Although Amazon dense rainforest is the most stable vegetation regime, there are significant sea-
sonal variations in both MLSE and Tbs, with amplitudes of about 0.025 and 7.0 K, respectively. The day-to-day
variation of MLSE and Tbs is larger in the wet seasons than in the dry seasons, although the mean MLSE and
Tbs are lower in the wet seasons than in the dry seasons. After precipitation, the SM, VWC and canopy inter-
ception water increase and reach their peak values at different transit times. There is an equilibrium time
point (about 4 h in this case) at which the vegetation–soil system holds the largest amount of moisture.
Consequently, Tbs and MLSEs decrease during the first several hours after the start of precipitation and
then increase after the equilibrium time point. Ignoring the “turning point” may introduce significant errors
in the estimation of MLSEs (up to 0.04) and Tbs (up to 10 K) under rainy conditions.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The land surface plays key roles in the water, carbon, and energy
cycles in the Earth climate system at a variety of time and spatial
scales, by receiving impacts from and regulating feedbacks to the at-
mosphere. Such interactions are especially strong in dense vegetation
covered areas such as the Amazon tropical rainforest. The broad spec-
tra of spatial and temporal scales of climate system and inherent het-
erogeneity of the biosphere require the use of satellite remote sensing
techniques to study and monitor surface/soil/canopy states and the
related atmospheric and environmental processes. In particular, the
soil moisture (SM) and vegetation water content (VWC) are the two
most important parameters controlling the physical and phenological
processes of the land surface. Precipitation makes direct impacts on
soil moisture and canopy water through infiltration and interception.
Therefore, accurate measurements of SM, VWC, and precipitation
overland are critical in understanding the climate system. However,
optical sensors on satellite platform have their limitations in remotely
sensing those parameters. Attention is paid to microwave sensors that
are capable of measuring radiation emitted from the soil–vegetation–
atmosphere medium. Remotely sensing SM, VWC, and precipitation
frommicrowave sensors requires better understanding and qualifying
rights reserved.
ofmicrowave land surface radiative properties under all-weather con-
ditions, particularly under rainy conditions.

The upwellingmicrowave radiance at the top of atmosphere (TOA)
has different sensitivities to different portions of the soil–vegetation–
atmosphere medium, depending on its frequency. Microwave signals
at low frequencies (e.g. 1.6 and 6.9 GHz, etc.) are more favorable to
sense the land surface parameters due to their relative insensitivity
to the atmosphere and their capability of deep soil penetration
(Njoku, 1999 and reference therein). However, few existing rainfall al-
gorithms include these low frequencies. Also, their spatial resolutions
are significantly lower than the medium and higher frequencies. The
microwave signals at high frequencies (85 GHz and higher) carry in-
formation of the land surface under clear-sky conditions, but they
are severely affected by atmospheric hydrometeors under cloudy con-
ditions (Grody, 1991; Liu et al., 1994; Spencer et al., 1989). Microwave
signals at moderate frequencies, such as 18.7, 23.8 and 36.5 (hereafter
19, 24 and 37 for brief) GHz, are sensitive to both land surface and
atmospheric properties (Aires et al., 2005; Morland et al., 2000,
2001; Lin & Minnis, 2000; Min & Lin, 2006a, 2006b; Prigent et al.,
2005). Such a capability of moderate frequency microwave signals
has been receiving increasing attention recently because of their po-
tential applications in retrieving rainfall over land (Ferraro et al.,
2013). We will focus on the microwave signals at 19, 24, and 37 GHz
in this paper, to understand microwave land surface radiative proper-
ties, at those frequencies, under all weather conditions.
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Fig. 1. The locations and terrestrial features of the two sites of Km83 and Km67 in the
snapshot of Google Earth and the selected areas for collocatingwith satellite observations.
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It is well known that the microwave emissivity (reflectivity) of
bare soil decreases (increases) with soil moisture because of the great-
er dielectric constant of water compared to other natural materials in
the dry soil. Numerous studies using different data sources in different
regions showed that the satellite retrieved microwave land surface
emissivities (MLSEs) at multiple frequencies are negatively correlated
to the soil moisture (Ulaby et al., 1986 and associated reference there-
in; Aires et al., 2005; Morland et al., 2000, 2001; Lin & Minnis, 2000;
Norouzi et al., 2001; Prigent et al., 2005). However, there were some
exceptions where the correlations could be either insignificant or
even positive, mainly due to the complex inherent correlations be-
tween soil moisture and vegetation (e.g. Prigent et al., 2005). On the
other hand, MLSEs are found, in general, increasing with vegetation
mainly based on visible and infrared vegetation indexes (Morland et
al., 2000, 2001; Norouzi et al., 2001; Prigent et al., 2005; Ruston &
Vonder Haar, 2004). However, Min and Lin (2006a, Figure 2) pointed
out that the relationship between MLSE and vegetation water content
may be more complicate and not monotonic. With the aid of a simpli-
fied radiation transfermodel in the soil–vegetationmedium, they pre-
dicted that the MLSE increases with VWC due to the scattering and
emission effects of the crown layer when VWC is relatively small.
However, when VWC in the crown layer is large enough, the strong
absorption of the crown attenuates the soil emission, resulting in the
apparent emissivity dominated by the vegetation emissivity and de-
creased with VWC.

Clearly, MLSE is not static but a resultant of dynamical processes
coupled land surface (soil and vegetation, snow pack in some regions)
and the atmosphere, as both soil moisture and vegetation water con-
tent response to weather and climate changes. Clouds and associated
boundary layer humidity enhance both radiation use efficiency and
water use efficiency of forests (Min, 2005), and consequently lead to
changes in the canopy VWC and SM. Rain events more directly change
soil moisture and canopy water (internal vegetation water content
and/or intercepted water on leaves), resulting in changes in MLSE.
The net effect on MLSE is very complicated and is strongly dependent
upon the soil and vegetation properties, as well as cloud and precipi-
tation properties (amount, during, intensity, and type). Morland et
al., (2000, 2001) reported that there was a positive correlation be-
tween MLSE and Normalized Difference Vegetation Index (NDVI)
over dry land surface, but such a correlation became weak under wet
land surface conditions (after rain events). Ferraro et al. (2013) also
found MLSE dropped after significant rainfall and the changes were
dependent on how dry the soil was before the rain event. Most
MLSEs used in previous studies were retrieved under clear-sky condi-
tions due to the increasing uncertainties introduced by cloud hydro-
meteors in the radiation transfer process. There is no systematic
study of MLSE changes in the transition from clear-sky to cloudy and
to rainy conditions. By using the synergized satellite retrievals of
cloud and the microwave brightness temperature, we developed an
algorithm to retrieve MLSE under both clear and non-rainy cloudy
conditions (Min & Lin, 2006a; Min et al., 2010). In this study, we com-
bine the non-rainy all weather retrievals with the in-situ measure-
ments at two Amazon sites to investigate the dynamic response of
land surface microwave properties to SM, VWC and precipitation.

2. Data and methodology

2.1. In-situ measurements

The in-situ measurements used in this study were collected from
two Amazon primary tropical rainforest sites: the Km83 (3°03′S,
54°56′W, from 2002 Jul to 2004 Jan) and Km67 (2°51′S, 54°58′W,
from 2002 Jul to 2006 Jan), shown in Fig. 1, operated as part of the
Large-scale Biosphere–Atmosphere Experiment in Amazonia (Hutyra
et al., 2007; Miller et al., 2009; Saleska et al., 2003). The vegetation
around the Km83 site was tropical humid forest on a flat plateau, with
a canopy height of 20–40 m. The Km67 site was in an old-growth forest
with a canopy height up to 43 m. The mean annual precipitation was
about 1920 mm at the site. The precipitation was measured at 64 m
height every 30 min at the Km83 site and at 42.6 m height every
1.0 h at the Km67 site. Thesemeasurements actually represent the pre-
cipitation at the top of the canopy not at the surface. For some very
weak precipitation, the rain water may not fall through the canopy
due to the interception. However, there was no direct measurement
of canopy intercepted water. Using eddy-covariance data, Czikowsky
and Fitzjarrald (2009) estimated that themean interception formoder-
ate daytime rainfall-rate events was about 10% at the Km67 site, with
light events at 18% and heavy events at 7.8%.

The soil moisture was measured at 10, 20 and 40 cm depth every
30 min at the Km83 site but not available at the Km67 site. Consider-
ing the penetration depth (the order of 0.1–1 cm) of the microwave
radiance at the frequencies of 19, 24 and 37 GHz, the 10 cm SM
might be significantly different from the effective soil moisture that
influences the microwave radiance. However, using the 10 cm mea-
surements is the best way we can do to represent the near surface
soil moisture. For the Km67 site, where SM measurements were not
available, we use the dry duration (DD) as an indicator of soil mois-
ture or the soil potential wetness. DD is estimated from the high tem-
poral resolution in-situ precipitation records as the time duration
between a given time point to the latest rain event. The underlying
assumption is that no rain event was missed by the in-situ measure-
ments. Since satellite retrievals of MLSE cannot be obtained during a
rain event, the dependence of MLSE on DD (always larger than
zero) may provide a bridge to extrapolate the non-rainy MLSE behav-
ior to the rainy MLSE. In addition, the air temperatures measured at
multiple heights from 2 m to 64 m were used to derive the needed
land surface temperature for the satellite retrievals.

2.2. Satellite retrievals

A key step for understanding the sensitivity of land surface micro-
wave properties to environmental parameters is to obtain all non-
rainy weather retrievals, particularly under cloudy conditions. We
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have developed this required algorithm by combiningmicrowavemea-
surements with visible and infrared observations (Li et al., 2009; Lin &
Minnis, 2000;Min & Lin, 2006a, 2006b;Min et al., 2010). This synergetic
retrieval algorithm, with careful treatments of horizontal inhomogene-
ity of cloud fields, cloud vertical distribution and cloud phase partition,
allows us to get retrievals ofMLSE under both clear-sky and cloudy con-
ditions. We use Aqua Advanced Microwave Scanning Radiometer for
EOS (AMSR-E) measured multiple channels of microwave brightness
temperature at TOA as the primary input. The MODerate resolution Im-
aging Spectroradiometer (MODIS) on Aqua provides the visible and in-
frared measurements of aerosol and cloud fields (1 km resolution)
within the relatively large field of view (FOV) of AMSR-E. To deal with
the sub-FOV horizontal inhomogeneity, a Gaussian weighting function
of each individual MODIS pixel within the AMSR-E FOV is applied. The
retrievals from different channels and polarizations are made using an
atmospheric microwave radiative transfer (MWRT) model with infor-
mation of clouds, water vapor, other atmospheric gases, and land
surface temperature (LST). The MWRT model accounts for the atmo-
spheric absorption and emission of gases and clouds, especially the
temperature and pressure dependences of these radiative properties
(Lin et al., 1998, 2001). The detailedmethod for integrating satellite mi-
crowave measurements with visible and infrared observations and
reanalysis dataset to retrieve MLSE has been described in Min and Lin
(2006a) and Min et al. (2010).

The uncertainty in LST is known as one of the greatest error sources
for the MLSE retrievals (Ferraro et al., 2013; Jiménez et al., 2012; Yang
& Weng, 2011; Zheng et al., 2012). Due to the different penetration
depth at different frequencies, LST is actually frequency-dependent.
In this study, the in-situ measured air temperatures at 2 m and 64 m
heights at 1:30 PM each day are used to estimate LST, following the
empirical relationship between LST and near surface air temperature
based on NCEP reanalysis data. Although we try our best to minimize
the uncertainty of LST in MLSE retrievals, some errors or biases exist.
To further avoid such an uncertainty, we also investigate the sensitiv-
ity of themicrowave brightness temperature at the land surface (Tbs).
Tbs is not affected by the uncertainty of LST estimation and shows
more consistency among different algorithms (Ferraro et al., 2013).

Existing satellite remote sensing for vegetation detection is based
on spectral measurements at visible and near-infrared wavelengths
that are correlated to the absorbed fraction of photosynthetically ac-
tive radiation (PAR), such as normalized difference vegetation index
(NDVI), and enhanced vegetation index (EVI). These vegetation in-
dexes, however, are highly sensitive to clouds and aerosols (unable
to provide information under cloudy conditions) and saturate at inter-
mediate values of leaf area index (LAI) (Asrar et al., 1984; Granger,
2000; Gutman, 1999; Min et al., 2010; Myneni et al., 1995; Sellers,
1985). To alleviate this problem in the dense vegetation regions with
high cloud covers, i.e., Amazon basin, we utilize the microwave
based vegetation index proposed by Min and Lin (2006a), i.e., micro-
wave Emissivity Difference Vegetation Index (EDVI) in this study.
The EDVI is defined as the MLSE differences between 19 GHz and
37 GHz, i.e. EDVI=2(MLSE19−MLSE37) /(MLSE19+MLSE37).

The microwave surface emission above a canopy is an integration
of the microwave radiation from the whole canopy vertical profile
and the soil weighted by its transmission. The emissivity observed
at longer wavelengths with a weaker attenuation by the canopy gen-
erally represents an effectively thicker layer than those observed at
shorter and stronger attenuation wavelengths. EDVI can provide a
measure of VWC (and remaining canopy intercepted water) with a
minimal influence of the soil emission underneath vegetation canopy
(Li et al., 2009; Min & Lin, 2006a, 2006b; Min et al., 2010).

2.3. Collocations between in-situ measurements and the satellite retrievals

Since the two sites are close to the Amazon River, we carefully select
two domains (0.36°×0.36°) around these sites to avoid contaminations
from the river, illustrated in Fig. 1. The Aqua overpasses the select do-
mains at about 1:30 pm local time (LT). In each overpass, Tbs, MLSE,
and EDVI are retrieved for all non-rainy AMSR-E FOVs within the two
selected domains. LST for AMSR-E FOV is assumed to be the same as
that estimated at the Km83 and Km67 sites. Then all of the retrievals
are averaged over the 0.36°×0.36° domain to represent the mean Tbs,
MLSE and EDVI at these sites to minimize the potential sub-FOV spatial
variability (agriculture patches and uncovered bare soil spots). Finally,
the averaged Tbs, MLSE and EDVI are collocated with the in-situ mea-
surements of SM, DD, and precipitation.
3. Results

MLSE is determined by the dielectric constant of the dry soil, the
soil moisture (SM), the surface roughness, the structure of vegetation,
the vegetation water content (VWC) and the canopy interception
water. The SM, VWC and canopy interception water change rapidly
through the dynamical processes coupled land surface and the atmo-
sphere at inter-annul, seasonal and diurnal scales. To understand
physical mechanisms of the MLSE dynamics, we first look into the
time series of satellite retrieved Tbs, MLSE and EDVI (retrievals are
available only under non-rainy conditions) with the associated in-
situ measurements of SM and precipitation, as shown in Figs. 2
and 3. At both sites, soil and vegetation experienced distinct dry
(July to November) and wet (December to June) seasons. SM abruptly
increased when precipitation occurred and decreased slowly and ex-
ponentially in the dry period as a result of evaporation (Fig. 2). As
expected, the mean level of SM was relatively lower in the dry season
than in the wet season. EDVI, as an indicator of VWC and interception
water, decreased with the dry duration and reached its minimum in
the middle of dry seasons. Then it started to increase before the start
of the wet season. The SMwas relatively low and stable in the dry sea-
son. Although SM remained high with a slight increasing trend in the
middle of the wet seasons, EDVI reached its peak earlier than SM and
gradually decreased until another seasonal cycle. The phase of EDVI
seasonality seemed to be in advance of the precipitation seasonal
phase, suggesting a possible coupling mechanism in which evapo-
transpiration (which is positively correlated with EDVI, see Li et al.
(2009)) from vegetationmay trigger the wet season and enhance pre-
cipitation. The MLSE of vertical polarization at 19 GHz was higher in
the dry season than in thewet season,with a seasonalmean difference
of 0.025. Although the running averaged MLSE (red curve) tended to
be more stable in the wet season than in the dry season, there were
large day-to-day variations (up to 0.03) in the emissivity and this var-
iation was mainly associated with precipitation and associated inter-
ception water. In the dry season with a long period of no-rain, there
was an anti-correlation between MLSE and EDVI. As clearly shown in
the period of Sept–Dec of 2002, where the baseline of SM was low
and relatively constant, MLSE decreased with EDVI (or VWC),
suggesting the positive impacts of VWC on MLSE. In the wet season,
on the other hand, the relationships among SM, VWC and MLSE are
more complicated and detailed investigations will be discussed
below. In general, MLSEs at other frequencies and polarizations, not
shown, have similar seasonality patterns of MLSE at 19 GHz. Tbs at
19 GHz varied from 286.2 to 293.4 K, shown in Fig. 2b, with seasonal-
ity similar to that of MLSE. Tbs at 37 GHz was about 3.4° lower than
Tbs at 19 GHz due to the scattering depression from the vegetation
elements (leaves, stems and branches, etc).

The results at the Km67 site are consistent with those at the Km83,
shown in Fig. 3, except for the replacement of DD for the in-situ mea-
sured SM. DD has high values in the dry season and low values in the
wet season (the DD is plotted in a reversed order in Fig. 3a). VWC as
indicated by EDVI is strongly anti-correlated with Log(DD) at seasonal
scales. The phase of VWC seasonality was slightly ahead those of
Log(DD) and precipitation, consistent with the finding at the Km83



Fig. 2. Time series of (a) MLSE at 19 GHz (V polarization), soil moisture, EDVI the vegetation water content index and rain rate; (b) 19 and 37 GHz brightness temperatures
(V polarization) at Km83 site.
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site. MLSEs (and TBs) are also correlated with VWC (negative) and DD
(positive) at seasonal scale.

3.1. Soil moisture

To understand the impact of soil–vegetation interaction on the
microwave land surface brightness temperature and emissivity, we
use a simple two-layer model and assume 1) the soil surface is uni-
form; 2) the vegetation layer has small single scattering albedo; and
3) the reflection at the vegetation–air interface can be ignored. There-
fore the microwave brightness temperature Tb at the top of the cano-
py can be expressed as:

Tb ¼ Tsεse
−τ=μ þ Tc 1−e−τ=μ

� �
1−ωð Þ

þ Tc 1−e−τ=μ
� �

1−ωð Þ 1−εsð Þe−τ=μ ð1Þ
Fig. 3. Time series of (a) MLSE at 19 GHz (V polarization), dry duration, EDVI the vegetation w
tion) at Km67 site.
where Ts, Tc, εs, ω, τ and μ are the soil temperature, the canopy tem-
peratures, the soil emissivity, the canopy single scattering albedo,
the optical depth of the canopy, and the radiation direction, respec-
tively. The first term of the right hand of Eq. (1) stands for the emis-
sion from the soil with the vegetation attenuation. The second term
stands for the upwelling emission directly from the vegetation. The
third term stands for the vegetation downwelling emission that is
reflected by the soil and further attenuated by the vegetation.

Given the facts that 1−εs is one order of magnitude smaller than
one and e−τ/μ is also smaller than one, we further ignore the third
term:

Tb ¼ Tsεse
−τ=μ þ Tc 1−e−τ=μ

� �
1−ωð Þ: ð2Þ

Further assuming the temperature difference between the soil and
the vegetation is small (i.e. Ts≈Tc); we will have the apparent
ater content index and rain rate; (b) 19 and 37 GHz brightness temperatures (V polariza-

image of Fig.�2
image of Fig.�3
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microwave land surface emissivity MLSE (ε) at the top of the canopy
as:

ε ¼ εse
−τ=μ þ 1−e−τ=μ

� �
1−ωð Þ: ð3Þ

Because vegetation and soil are a coupled system, MLSE is compli-
catedly related to SM, as shown in Eq. (4):

∂ε
∂SM ¼ e−τ=μ ∂εs

∂SM− 1
μ

εs− 1−ωð Þ½ �e−τ=μ ∂τ
∂SM− 1−e−τ=μ

� � ∂ω
∂SM : ð4Þ

If assuming vegetation properties are independent or weakly de-
pendent on SM, the first term in Eq. (4) prevails. As the soil emissivity
decreases with SM, i.e. ∂εs/∂SMb0, the sensitivity of MLSE to SM is
also negative with an attenuation effect from the vegetation. Fig. 4
shows that both MLSE and Tbs at all three frequencies are negatively
correlated with the in-situ soil moisture and these correlations are
statistically significant. It is consistent with theoretical analysis and
previous studies (Lin &Minnis, 2000; Prigent et al., 2005; and others).
Relatively, the microwave properties at 19 and 37 GHz have a similar
sensitivity to the soil moisture and are stronger than those at 24 GHz,
probably due to the lesser influence of water vapor.

In the dense vegetation regime, such as Amazon rainforest, the soil
moisture signal should be substantially attenuated by the vegetation,
resulting in decoupling betweenMLSE and SM. The observed sensitiv-
ity of MLSE to soil moisture, however, could stem from 1) the inher-
ent linkage between soil moisture and vegetation water content,
and 2) the contribution from the soil moisture signals of agriculture
patches and uncovered bare soil spots (roads) with the footprint of
AMSR-E.
Fig. 4. The scatter plots of Tbs and MLSEs at (a,d) 19 GHz; (b,e) 24
3.2. Vegetation

The noisiness in Fig. 4 and the complexity of Eq. (4) manifest the
facts that 1) vegetation also plays a key role in determining MLSE at
the top of the canopy. As pointed out by Jackson and Schmugge
(1991), the vegetation optical depth at microwave wavelengths has
a semi-empirical relation with VWC, i.e., τ=b·VWC, in which coeffi-
cient b varies systematically with both wavelength and canopy struc-
ture. To investigate the impact of VWC on MLSE, we explicitly take
the derivative of VWC in Eq. (3). Hence, the sensitivity of MLSE to
vegetation is:

∂ε
∂VWC

¼ − e−τ=μ

bμ
εs− 1−ωð Þ½ �− 1−e−τ=μ

� � ∂ω
∂VWC

: ð5Þ

Although Lin et al. (2008) found the effective single scattering
albedo of vegetation is sensitivity to its VWC, the direct measurement
of ω is not available in this study. We just ignore the term associated
with ∂ω/∂VWC for simplicity. A more comprehensive discussion
about this effect requires more detailed radiation transfer model tak-
ing into account of both the surface and canopy scattering. The sensi-
tivity of MLSE to VWC could be either positive or negative, depending
on the partition between vegetation (1−ω) and soil emission (es)
characteristics. Fig. 5 clearly shows such complicated MLSE–VWC
(EDVI) relationships at all three frequencies: i.e., MLSEs as well as
Tbs increase when VWC (EDVI) is small and then decrease with
VWC when VWC is large. This non-monotonic dependence of MLSE
on VWC is consistent with the theoretic calculation of Min and Lin
(2006a). Specifically, when EDVI is smaller than 0.007 in this case,
both Tbs and associated MLSE increase with EDVI; when the EDVI is
GHz and (c,f) 37 GHz against soil moisture at the Km83 site.

image of Fig.�4


Fig. 5. The scatter plots of Tbs and MLSEs at (a,d) 19 GHz; (b,e) 24 GHz and (c,f) 37 GHz against EDVI the index of vegetation water content at both the Km83 and Km67 sites. The
overlapped fitting curves are in the linear–exponential function of y=y0+axEXP(−bx) (y0>0; a>0; b>0).
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larger than ~0.007, both Tbs and MLSEs decrease with EDVI. The
dependence of Tbs and MLSE on EDVI can be fitted with a linear–
exponential function:

Tb MLSEð Þ ¼ Tb0 MLSE0ð Þ þ aEDVI exp −bEDVIð Þ: ð6Þ

The correlation coefficients and associated parameters of in Eq. (6)
are listed in Table 1. Basically, with a high SM and consequently a low
soil emissivity, MLSE increases with VWC for low VWC, due to the
scattering and emission effects of the vegetation. However, when
VWC is high enough, the strong absorption of the vegetation attenu-
ates the soil emission, resulting in MLSE dominated by the vegetation
emissivity that decreases with VWC.

Our finding differs from the monotonic positive correlation be-
tween MLSE and vegetation reported by some previous studies
(Aires et al., 2005; Morland et al., 2000, 2001; Prigent et al., 2005),
in which the Normalized Difference Vegetation Index (NDVI) is used
to represent the vegetation. At small VWC, they are consistent with
each other. As the Amazon rainforest is in dense vegetation regime,
Table 1
Parameters in the linear–exponential fitting of Tb and MLSE to EDVI.

Tb (K) MLSE

19 GHz 24 GHz 37 GHz 19 GHz 24 GHz 37 GHz

y0 279.57 276.52 274.53 0.940 0.925 0.919
a 4389.34 6918.92 5951.84 13.563 23.78 20.30
b 152.36 172.41 166.98 161.317 175.260 170.838
R2 0.23 0.30 0.35 0.20 0.29 0.34
our results provide new insights about the relationship for a larger
range of VWC.
3.3. The precipitation

Precipitation and associated clouds play a pivotal role in the soil–
vegetation–atmosphere interactions and modulate the soil moisture
and vegetationwater content. For physically-based overland rainfall re-
trievals, both rainy pixel classification and rain rate quantification re-
quire the knowledge of Tb and MLSE under cloudy and even rainy
conditions. However, the direct retrieval of Tb and MLSE under rainy
conditions from satellite passive microwave measurements is not
easy, if not impossible, due to the strong emission, scattering, and ab-
sorption effects from precipitating hydrometeors. A feasible approach
is to extrapolate MLSE from the non-rainy or “near rain” conditions to
the rainy condition. The impacts of SM and VWC on Tb and MLSE
discussed in the previous subsections provide the fundamental under-
standing to establish such a linkage. Specifically, we will focus on the
behavior of MLSE in terms of dry duration (DD), since DD equals zero
when it rains.

To understand the dynamics of Tb and MLSE after precipitation,
we first investigate the responses of soil moisture and vegetation
water content to precipitation. As shown in Fig. 6a for three randomly
selected rain events, SM firstly increased gradually in response to pre-
cipitation, peaked a few hours later after the start of rain due to inter-
ception and infiltration processes, and then decreased gradually as a
result of evapotranspiration. The time for SM to reach its maximum
and the magnitude of the maximum strongly depend on the rain du-
ration, the rain rate, the canopy structures, and the soil type. It should

image of Fig.�5


Fig. 6. (a) The observed response of SM to precipitation in three selected isolated rain events in Km83 site; (b) The scatter plot of observed EDVI the index of VWC against dry
duration using all proper samples in Km83 and Km67 sites.
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be noticed that the near-surface SM may be peak earlier than the SM
at 10 cm measured here, due to infiltration processes.

There was no directmeasurement of VWC and interception water at
the site. Instead, the field measurements of the diurnal xylem diameter
change at different heights in a 37-year-old Scots pine at Hyytiälä,
southern Finland showed the swelling of xylem associated precipitation,
as a result of changes in transpiration and soil water tension, suggesting
an increase of VWC after precipitation (Perämäki et al., 2001; Sevanto
Fig. 7. The scatter plots of Tbs andMLSEs at (a,d) 19 GHz; (b,e) 24 GHz and (c,f) 37 GHz agains
fitting curves are in the function of Y=Y0−AxEXP(−Bxc) (Y0>0; A>0; B>0; C>0, see Table 2
0–0.0005; Black for samples with EDVI 0.0005–0.015; Blue for samples with EDVI>0.015. The
DD zero (i.e. rainy condition).
et al., 2005a, 2005b). It also provides the evidence of inherent coupling
between soil moisture and VWC. Also, as estimated by Czikowsky and
Fitzjarrald (2009), the mean interception was about 10% at the Km67
site, depending on the rain duration and the rain rate. The mean
intercepted water per rain event was about 0.1 mm/m2 or 0.1 kg/m2,
which is one order magnitude smaller than VWC in the canopy crown
leaves (not including branches and twigs) of 1.5–3.5 kg/m2. The
intercepted water (both on the leaves and over the surface) in general
t dry duration (DD, hours, in logarithm) at both the Km83 and Km67 sites. The overlapped
for details). The different colors for the fitting curves stand for: Red for samples with EDVI
dashed reference lines stand for simple linear extrapolations of the curve from large DD to
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evaporated within 4 h after the first rain tip (Czikowsky & Fitzjarrald,
2009). Although EDVI cannot be retrieved during rain events, the com-
bined VWC and intercepted water as indicated by EDVI, shown in
Fig. 6b, increasedwith DD and started to decrease gradually after certain
time point. Clearly, the canopy experiences dynamical changes in soil
and vegetation within several hours after precipitation.

The changes in MLSE and Tbs after precipitation as a function of
DD are shown in Fig. 7, exhibiting two distinct tendencies for all fre-
quencies. It took about 4 h on average to reach the minimum values
of MLSE and Tbs. With the persistence of dry conditions after that
time, MLSE and Tbs gradually increase.

Fig. 8 illustrates the conceptual changes of SM, VWC, and intercep-
tion water, and MLSE in response to precipitation. As found in the real
observation (Fig. 6) after the start of rain, soil moisture, VWC and in-
terception water all increase and reach their maximum values with
different transit times. The SM reaches its peak earlier than the VWC
because it takes time for surface water to reach the root zone via infil-
tration and additional time to uptake water from their root zone to
leaves. The peak time of the interception water highly depends on
the rain intensity, rain duration and the vegetation structure. There
is no direct observation on how the interception water impacts on
MLSEs and Tbs. We suspect that its impacts are overwhelmed by
vegetation due to its relatively small water mass compared to VWC.
Due to the correlations of MLSE (and Tbs) and SM and VWC, the
Fig. 8. Conceptual plot describing the responses of soil moisture, vegetation water content, int
increase of SM and VWC in the first several hours after rain leads to
the decreases of MLSE and Tbs, as observed in Fig. 7 when DDb4 h.
This is the time duration required for precipitating water to settle
within the canopy, resulting in an equilibrium time point at which
the vegetation–soil system hold the largest amount of moisture and
has the minimum values of MLSE and Tbs. The four-hour transit time
is consistent with the time of interception evaporation found by
Czikowsky and Fitzjarrald (2009). As the evapotranspiration process
dried up the canopy, MLSE and Tbs gradually increased after the equi-
librium time point.

Precipitation induced changes in MLSE and the transit time to its
minimum are strongly dependent on antecedent soil moisture and
vegetation conditions, canopy structures (root, trunk, branch, leave),
and precipitation characteristics (rain duration, rain rate). The transit
time will be short for short and sparse vegetation, and nearly none for
bare soil. Most of the current estimations of MLSE are obtained under
clear-sky conditions, and the clear-sky condition is usually a few
hours after precipitation events. As shown in Figs. 7 and 8, a simple
linear extrapolation from the clear-sky MLSE value to the rainy
MLSE value (DD=0) would result in an underestimation of Δε. Δε
can be as high as ~0.03–0.04 at 19 and 37 GHz, shown in Fig. 7, re-
spectively. Consequently, the associated errors in Tbs will be about
10 K. On the other hand, simply using the clear sky MLSE values with-
out extrapolation would result in overestimation of Δε′.
erception water and the associate microwave land surface emissivity to the precipitation.

image of Fig.�8


Table 2
Parameters in the linear–exponential fitting of Tb and MLSE to dry duration (in three
different EDVI ranges).

Tb (K) MLSE

19 GHz 24 GHz 37 GHz 19 GHz 24 GHz 37 GHz

EDVIb0.0005 Y0 291.39 291.56 288.27 0.972 0.973 0.961
A 14.15 7.18 10.53 0.008 0.011 0.009
B 1.40 0.64 1.12 0.356 0.286 0.340
C 0.37 0.56 0.42 0.693 0.775 0.704
R2 0.31 0.37 0.33 0.23 0.30 0.25

EDVI 0.0005–0.015 Y0 290.23 289.72 286.54 0.969 0.967 0.957
A 14.43 8.26 12.32 0.016 0.013 0.016
B 1.54 0.90 1.37 0.882 0.504 0.827
C 0.35 0.47 0.37 0.465 0.607 0.482
R2 0.25 0.25 0.25 0.20 0.21 0.21

EDVI>0.015 Y0 286.86 285.08 282.26 0.960 0.954 0.945
A 2.13 3.64 4.69 0.004 0.007 0.008
B 0.22 0.39 0.61 0.089 0.140 0.240
C 0.92 0.75 0.64 1.179 1.046 0.882
R2 0.18 0.16 0.18 0.19 0.19 0.20

191R. Li, Q. Min / Remote Sensing of Environment 133 (2013) 183–192
The joint soil–vegetation effect of precipitation can be parameter-
ized as a linear–exponential function of dry duration:

Tb MLSEð Þ ¼ Tb0 MLSE0ð Þ þ A⋅DDexp −B⋅DDC
� �

: ð7Þ

The linear–exponential relationship can be further parameterized
for different ranges of EDVI, with better correlation coefficients (the
fitting coefficients are listed in Table 2). The correlation coefficients
are statistically significant and decrease with VWC index or EDVI. It
is worth noting that the fitting coefficients are a function of soil prop-
erties and canopy structures. Overall, Tb and MLSE vary with dry du-
ration (DD) linear-exponentially, consistent with our conceptual
model. The conceptual model, as well as Eq. (7), provides a way to un-
derstand the impacts of precipitation on MLSE.

4. Discussion and conclusion

To understand the dynamics of the microwave land surface proper-
ties, including Tbs and MLSE, at different time scales and to parameter-
ize those under rainy conditions, require synergized products of both
satellite retrieved MLSE and associated environmental parameters.
This study is built upon our all-weather (non-rain)MLSE retrieval algo-
rithm to obtain satellite MLSE retrievals close to precipitation events
under cloudy conditions (Min & Lin, 2006a; Min et al., 2010). We inte-
grated satellite MLSE retrievals with surface and other meteorological
measurements at two Amazon forest sites to study the impacts of soil
moisture, vegetation water content, and precipitation onMLSE and Tbs.

Although Amazon dense rainforest is the most stable vegetation
regime, there are significant seasonal variations in both MLSE and
Tbs, with amplitudes of about 0.025 and 7.0 K, respectively. At the
seasonal scale, MLSE and Tbs are anti-correlated with VWC indicated
by EDVI, with modulation of seasonal soil moisture variation. The
day-to-day variation of MLSE and Tbs is larger in the wet seasons
than in the dry seasons, although the mean MLSE and Tbs are lower
in the wet seasons than in the dry seasons.

For the dense vegetation like the Amazon tropical rainforests we
studied, microwave signals are supposed to be insensitive to soil
moisture due to strong vegetation absorption. However, there is an
apparent relationship between MSLE (and Tbs) and soil moisture
found in this study and the anti-correlation is statistically significant.
Either the soil moisture signal has not been fully blocked by the forest
or the soil moisture signal is indirectly observable through VWC due
to the inherent coupling of VWC with soil moisture.

As the forests at our study sites are in a dense vegetation regime, the
impact of VWC on MSLE (and Tbs) is no long a linear relationship as
reported by many previous researches (Morland et al., 2000, 2001;
Norouzi et al., 2001; Prigent et al., 2005; Ruston & Vonder Haar,
2004). At relatively low VWC values, MLSE does increase with VWC,
consistent with previous findings. However, when VWC is higher than
a threshold, MLSE decreasing with VWC prevails. The anti-correlation
between MLSE and VWC is clearly evident at seasonal scales. Our theo-
retic analysis further suggested that the threshold or critical point is not
simply dependent on VWC but on the balance between soil emissivity
and vegetation emissivity (or 1 — single scattering albedo). The latter
is a function of vegetation structure and optical properties.

Precipitation directly changes soil moisture and interception
water, and indirectly modulates vegetation water content. The pre-
cipitation induced changes in MLSE and Tbs exhibit two distinct re-
gimes: a decreasing tendency in the first few hours and then an
increasing tendency for the persisting dry period. Based on the ob-
served responses of soil moisture, vegetation water content, and
intercepted water changes to adjacent rain events, we proposed a
simple conceptual model to explain the dynamics of MLSE in re-
sponse to precipitation. Part of the precipitation water is intercepted
by the vegetation and the rest is infiltrated into the soil to enhance
soil moisture at the upper humus layer and slowly into the deep
root zone. The infiltration and later transpiration processes result in
soil moisture reaching a maximum after certain transit time. In the
meantime, the swelling of xylem due to changes in transpiration
and soil water tension leads to increases of VWC. The increases in
both SM and VWC in concert result in a decrease in Tbs and MLSE be-
fore the precipitating water settle in the vegetation–soil system. After
precipitation and in the daytime (our study only focused on daytime
overpasses), the evaporation dries out the water both on the leaves,
over the land surface and within the canopy in a few hours (less
than 4 h according to Czikowsky & Fitzjarrald, 2009). Sequentially
after the intercepted water evaporated and the soil–vegetation sys-
tem reached its equilibrium, the evapotranspiration reduces both
soil moisture and VWC when the dry duration persists, resulting
MLSE increases. Precipitation induced changes in MLSE are strongly
dependent on antecedent soil moisture and vegetation conditions,
canopy structures (root, trunk, branch, leave), and precipitation char-
acteristics (rain duration, rain rate). The conceptual model illustrates
inherent responses of soil and vegetation to precipitation.

Our goal is to extrapolate the MLSE from non-rainy or “near rain”
conditions to that under rainy condition. A simple assumption of
MLSE always decreasing with the dry duration after rains will intro-
duce substantial errors in the MLSE extrapolation. Our empirical
fitting provides a more accurate means for such an extrapolation. As
discussed previously, without a proper extrapolation, substantial er-
rors may exist in the rainy MSLE estimations, up to 0.03–0.04 at 19
and 37 GHz, respectively. Certainly, our observed behaviors of SM,
VWC, intercepted water, and MSLE as a function of dry duration differ
from regime to regime. It warrants further and extensive investiga-
tion at various climate and vegetation regimes.
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